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Decision Making with Causality

- Causal Effect Estimation 1s necessary for decision making!

Will running
an ad-
campaign
Increase
sales?

Causal effect estimation plays an
important role on decision making!




A practical definition

Definition: T causes Y if and only if
changing T leads to a change in Y,
keep everything else constant.

Causal effect is defined as the magnitude by which Y is
changed by a unit change in T.

Two key points: changing T, everything else constant

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]



http://plato.stanford.edu/entries/causation-mani/

Treatment Effect Estimation

- Treatment Variable: T =1orT =0
- Potential Outcome: Y(T = 1) and Y(T = 0)
- Average Treatment Effect (ATE):

ATE = E[Y(T =1) — Y(T = 0)]

- Counterfactual Problem:

Y(T=1) or Y(T =0)



|deal Solution: Counterfactual World

- Reason about a world that does not exist

- Everything is the same on real and counterfactual worlds,
but the treatment
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Randomized Experiments are the “Gold Standard”

- Drawbacks of randomized experiments:
- Cost
- Unethical



Causal Inference with Observational Data

- Counterfactual Problem:
Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?

- Yes, with randomized experiments (X are the same)

- No with observational data (X might be different)
- Two key points:

- Changing T (T=1 and T=0)

- Keeping everything else (Confounder X) constant




Causal Inference with Observational Data

- Counterfactual Problem:
Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?
- Yes, with randomized experiments (X are the same)
- No with observational data (X might be different)

- Two key points:

Balancing Confounders’ Distribution




Related Work

- Matching Methods
» Exactly Matching, Coarse Matching

- Poor performance in high dimensional settings

 Propensity Score based Methods
- Propensity score e(X) = p(T = 1]X)
- Matching, Weighting, Doubly Robust

- Treat all observed variables as confounders,
and 1gnore the non-confounders

- Mainly designed for binary treatment
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(a) Previous Causal Framework.



New challenges in Big Data era

- Automatically separate confounders
-Not all observed variables are confounders
-Data-Driven Variables Decomposition (D?VD)
-Continuous treatment effect estimation

-Treatment variables are not always binary

-Generative Adversarial De-confounding (GAD)



New challenges in Big Data era

- Automatically separate confounders

-Not all observed variables are confounders
-Data-Driven Variables Decomposition (D?VD)



Previous Causal Framework

Variables

Treatment
T

reatment Effect
Estimation

(a) Previous Causal Framework.

- Treat all observed variables U as

confounders X

- Propensity Score Estimation:

e(U) =p(T = 1|U) = p(T = 1[X) = e(X)

- Adjusted Outcome:

* __ Y obs . T'—e(U) __ yobs T—e(X)
Yo=Y aora—emy =Y ama-emy

- IPW ATE Estimator:

ATEpw = E(Y*)



Our Causal Framework
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(b) Our Causal Framework.

- Separateness Assumption:

- All observed variables U can be decomposed into two
sets: Confounders X, and Adjustment Variables Z

- Propensity Score Estimation:
e(X) = p(T = 1|X)

- Adjusted Outcome:

vt — (Yobs B ¢(Z)) = T — e(X)

(X) - (1 = e(X))

- Our D2VD ATE Estimator:
ATEp2yp = E(Y)

Kuang K, Cui P, Li B, et al. Treatment effect estimation with data-driven variable decomposition
[C])//AAAI, 2017 (and extended to TKDE 2020)



Data-Driven Variable Decomposition (D4VD)

[ minimize ||Y* —h(U)|]?  where Y*= (Y -9(z)). e(x)T- Zf_(xix» ]
1
eX) =1 + exp(—Xp) ¢(Z) = Za,
Replace X, Zwithu  h(U) = U,
/minimize |(Y°" —Ua) ® W(B) —Uyl3, where W () := e(U?ZlefgzU))\

s.t. Z log(1 +exp((1—2T7)-UiB)) <,
i=1

lalle <X, 18l <6, Iylls < my|lle® B3 = 0,

\ - J
- Adjustment variables: Z = {U, : &; # 0}
o, :B' |4 - Confounders: X = {U; : 6@ # 0}

- Treatment Effect: AT E p2yp = E(UY)



Data-Driven Variable Decomposition (D4VD)

Bias Analysis:
Our D?VD algorithm is unbiased to estimate causal effect
THEOREM 1. Under assumptions 1-4, we have

E(Y'|X.Z) = BE(Y(1) — Y(0)|X, Z).

Variance Analysis:
The asymptotic variance of Our D?VD algorithm is smaller

THEOREM 2. The asymptotic variance of our adjusted estima-
e

e

tor AT E aq4; is no greater than IPW estimator AT E 1 pw :

2 2
Oadj < O1pPW -

Kun Kuang, Peng Cui, Hao Zou, Bo Li, Jianrong Tao, Fei Wu, and Shigiang Yang. Data-Driven
Variable Decomposition for Treatment Effect Estimation, TKDE, 2020



Learning Decomposed Representation for
Counterfactual Inference
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Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual

Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



Learning Decomposed Representation for
Counterfactual Inference

- Three decomposed representation networks
- 1(X), C(X), A(X)

- Three decomposition and balancing regularizers
- Confounder identification: A(X) L T,I(X) LY |T :
- Confounder balancing: w-C(X) L T i

- Two regression networks T
- Y(T =1), Y(T = 0) L I

- Orthogonal Regularizer for Decomposition

-----------------------

_ 71" . ~T A AT T
EO — _I W * CF[;" + OI’V * 14 W _'— 14 W ' _I w

Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



Learning Decomposed Representation for
Counterfactual Inference
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Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



Learning Decomposed Representation for
Counterfactual Inference

Table 1: The results on IHDP.

Table 2: Ablation studies of DeR-CFR.

Ly Ly Lcp Lo

PEHE

Within-sample

Out-of-sample

0.444 +/- 0.020

0.529 +/- 0.068

0.478 +/- 0.033

0.542 +/- 0.033

0.482 +/- 0.039

0.565 +/- 0.075

0.479 +/- 0.030

0.560 +/- 0.071

IHDP
Mean +/- Std Within-sample Out-of-sample

Methods PEHE EATE PEHE EATE
CFR-MMD | 0.702 +/- 0.037 | 0.284 +/- 0.036 | 0.795 +/- 0.078 | 0.309 +/- 0.039
CFR-WASS | 0.702 +/- 0.034 | 0.306 +/- 0.040 | 0.798 +/- 0.088 | 0.325 +/- 0.045
CFR-ISW 0.598 +/- 0.028 | 0.210+/-0.028 | 0.715 +/-0.102 | 0.218 +/- 0.031
SITE 0.609 +/- 0.061 | 0.259 +/-0.091 | 1.335 +/-0.698 | 0.341 +/-0.116
DR-CFR 0.657 +/- 0.028 | 0.240 +/-0.032 | 0.789 +/- 0.091 | 0.261 +/- 0.036
DeR-CFR 0.444 +/- 0.020 | 0.130 +/- 0.020 | 0.529 +/- 0.068 | 0.147 +/- 0.022

A A A
v v
o
v v

o v

0.635 +/- 0.035

0.858 +/- 0.133

Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



New challenges in Big Data era

-Continuous treatment effect estimation
-Treatment variables are not always binary

-Generative Adversarial De-confounding (GAD)



Continuous Treatment Effect Estimation

Binary Treatment
T=0or T=1
T L X: confounder balancing
Multi-valued Treatment
1=0,1,2,...
T L X: confounder balancing

(a) Randomized Con- (b) Observational Studies

trolled Trial (RCT) Continuous Treatment

Howtomake T L X ?

Li Y, Kuang K, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial
De-confounding[C]//KDD workshop 2020.



Continuous Treatment Effect Estimation

-Qurgoal: T 1L X
- Variable randomly shuffle to achieve independence

PROPOSITION 1. By randomly shuffle the value of the treat-
ment variable T over all samples in observed data Dops =
{T, X}, the shuffled treatment T would become independent
with the covariates X if sample size n — o0,

Absolute Pearson Coefficient
between T and X

||||||
UUUUUUUUUUUUUUUUUUUUUUUUUUUU

Sample Size n

Li Y, Kuang K, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial
De-confounding[C]//KDD workshop 2020.



Continuous Treatment Effect Estimation

-Qurgoal: T 1L X
- “calibration” distribution generation
+ Dear = {T7,X} on “calibration”, we have T’ L X

- “calibration” distribution approximation
- Observed distribution: Dops = {7, X}
- Learning sample weights for distribution approximation

sample weights W

Dgys = {T7 X} — D.u = {T/7X}
-Suchthat WT L WX



ldea from GAN mechanism
- Generative Adversarial Networks (GAN)

Real Data Distinguishing

e ) real or fake
\ D real |
V';?::Sfe \{ Discriminator
[Z ]——[ Generator ]— D¢ake
Generated
fake data
- Generative Adversarial De-confounding (GAD)
Calibration Data Distinguishing calibration
, or weighted observed
Dear = 11", X} D q
s,v'fer?gp,:f Discriminator
[Z | Generator - WDobs

Weighted
observed data



Generative Adversarial De-confounding (GAD)

- “Calibration” distribution: D.,;, = {1",X}
- Observed distribution: D, = {T, X}
- Sample weights learning with GAD

L(W d) — E(t,:ﬂ)chag [Z(d(f ‘T)T“
+ E(t.a)~D,,. l-u.r(t?m} L(d(t. I)EM
s.t. ]E(t’m)m]jﬂbs [w(tﬂm)] — LW >_" O

Li Y, Kuang K, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial
De-confounding[C]//KDD workshop 2020.



Continuous Treatment Effect Estimation
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Method

BIASyTEF RMSEnrer RMSEAprr

OLS 0.208(0.079)  0.236(0.089)  0.686(0.350)
IPWonsiane  1.385(0.757)  1.532(0.890)  5.506(2.061)
IPW.ipe  1.693(1.599)  1.878(1.849)  6.982(4.453)
ISMW 0.165(0.062)  0.181(0.069)  0.962(0.214)
CBGPS  0.187(0.137)  0.216(0.158)  0.683(0.380)
GAD 0.127(0.039) 0.144(0.046) 0.383(0.091)




New challenges in Big Data era

- Automatically separate confounders
-Not all observed variables are confounders
-Data-Driven Variables Decomposition (D?VD)
-Continuous treatment effect estimation

-Treatment variables are not always binary

-Generative Adversarial De-confounding (GAD)
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Task Definition - Court’s View Generation

PLAINTIFF’S The plaintiff A claimed that the defendant B should return the loan of 29,500 Principle Claim o 1d the corresponding

CLAIM interest "eres Claim
FACT After the hearing, the court held the facts as follows: The defendant B borrowed $29,500 from the plaintiff A, and
DESCRIPTION | agreed to return after one month. After the loan expired, the defendant failed to return Fact
COURT’S The court concluded that the loan relationship between the plaintiff A and the defendant B is valid. The defendant
VIEW failed to return the money on time "™ Therefore, the plaintiff’s claim on principle was supported 4@
according to law. The court did not support the plaintiff’s claim on interest Rejection hecause the evidence was
insufficient ",
Input: Output:
O L1 Court’s View, which consists of
[1 Fact description [] Rationale

(] Judgment

Court’s view generation 1s a specific text generation task



H—_—_——
Challenges

PLAINTIFF’S The plaintiff A claimed that the defendant B should return the loan of 29,500 Principle Claim o 1d the corresponding

CLAIM interest "eres Claim

FACT After the hearing, the court held the facts as follows: The defendant B borrowed $29,500 from the plaintiff A, and
DESCRIPTION | agreed to return after one month. After the loan expired, the defendant failed to return Fact

COURT’S The court concluded that the loan relationship between the plaintiff A and the defendant B is valid. The defendant
VIEW failed to return the money on time "™ Therefore, the plaintiff’s claim on principle was supported 4@

Rejection

according to law. The court did not support the plaintiff’s claim on interest because the evidence was

+ .~ Rationale
insufficient ~“o"*e,

(1 There exists ‘no claim, no trial’ principle in civil legal systems

L] court's view should only focus on the facts related to the claims
(1 The imbalance of judgment in civil cases

L1 over 76% cases were supported in private lending

(] would blind the training of the model by focusing on the supported cases
while 1gnoring the non-supported cases



H—_—_——
Imbalance: Mechanism Confounding Bias

(1 Imbalance between supported and non-supported cases
[] Lead to confounding bias during model training N7
(1 Understanding confounding bias with a causal graph:

L] u: unobserved data generation mechanism @
L1 D(J): judgment in dataset

L1 I: input (i.e., plaintiff’s claim and fact description) o o
L1 V: court’s view

(] Understanding confounding bias mathematically

L1 j: judgment (support and non-support):

PG=1|) =1
P(VII) = zP(VUJ)PUU) | > PWVID = PWV|I,j=1)
j




Method
Attentional and Counterfactual
based Natural Language Generation




B ——
Aftentional and Counterfactual based NLG

There exists ‘no claim, no trial’ principle 1in civil legal systems
9

Attentional encoder: keep the fact that related to the claims

The imbalance of judgment in civil cases

Counterfactual decoder: BTN

(] Back-door adjustment: from observation to intervention/causality

L] Cut the dependence between D(J) and I via counterfactual modeling

Back-door

P(VID = ) P(VILDPGI)
J

P(V|do(l)) = z P(VIL)P()
j

1 Binary j

P(V|do(I)) = P(V|I,j = 0)P(j =0) + P(V|l,j = DP( = 1)




Our Framework
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Claim-aware Encoder Counterfactual Decoder Judgment Predictor
AC-NLG 1s a multi-task model with:
[1 Claim-aware encoder [1 Counterfactual decoders
L1 Claim embedding L1 Supportive court’s view generation
L1 Fact embedding L1 Non-supportive court’s view generation

[] Claim-Fact attention [1 Judgment predictor



e
Claim-aware encoder

Wz Wy H=add
Iﬂ c—=claims
c i ﬁ f=facts
h { h*=hidden states of x
Attention Layer v*® =supported view
2 v"=non-supported view
. -!:: :—'- .Il:.'_;lf;l } sV'=decode states of v
,f\ 4 J=judgment

BAAAA

Claim-aware Encoder

Challenge 1: court's view should only focus on the facts related to the claims



Counterfactual decoders
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Counterfactual Decoder

P(V|do(I)) = P(V|I,j = 0)P(j = 0) + P(V|I,j = DP(j = 1)




Judgment predictor

H=add

c=claims

f=facts

h*=hidden states of x
v® =supported view
v"=non-supported view
s¥'=decode states of v*
J=judgment

FC Layer

:

Sigmoid | j

Judgment Predictor

P(V|do(I)) = P(V|I,j = 0)P(j=0)+ P(V|I,j = DP(j = 1)




Result
Results on court’s view generation

Method ROUGE BLEU BERT SCORE
e R R2 RL Bl B2 BN p r fl
S28 540 357 483 65.0 576 505 896 895 896

S2SwS 51,5 320 450 633 556 479 838 888 862
PGN 533 371 488 620 561 500 940 912 926

PGNwS 532 360 480 63.1 567 502 957 940 948

AC-NLGw/oBA 541 38.1 499 618 559 499 0936 0919 0928
AC-NLGw/oCA 53,7 36.7 491 621 560 497 945 0926 935
AC-NLGwS 53.7 _ 364 485 _ 628  565_ 500_ 940_ 92.1_ 930

Results on judgment prediction

Prediction Acc.

Method Support Non-support Results of human evaluation
p r fl p r fl
wioD 721 810 763 569 443 498 Tudament :
w/oCA 920 972 945 856 660 745 Method o = < H S onsupport Rational  Flu.
wS 86.0 943 900 628 386 478 PGN 334 178 310_ _ 34

I ACKNLG 934 959 946 R815 729 769 AC-NLG 3.52 3.24 3.25 3.50




Engineering

The official journal of the Chinese Academy of Engineering

Engineering Survey Paper:
Causal Inference (FER#EIE)

Kun Kuang, Lian L1, Zhi Geng, Le1 Xu, Kun Zhang, Beishui Liao,
Huaxin Huang, Peng Ding, Wang Miao, Zhichao Jiang

Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H.,
Ding, P., Miao, W., Jiang, Z. (2020). Causal Inference. Engineering.
http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016



http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016
http://en.cae.cn/en/

Content

* Kun Kuang: Estimating average treatment effect: A brief review and beyond
 Lian Li: Attribution problems in counterfactual inference
* Zh1 Geng: The Yule—Simpson paradox and the surrogate paradox
* Le1 Xu: Causal potential theory
* Kun Zhang: Discovering causal information from observational data
* Beishui Liao and Huaxin Huang: Formal argumentation in causal reasoning and explanation
* Peng Ding: Causal inference with complex experiments
* Wang Miao: Instrumental variables and negative controls for observational studies
» Zhichao Jiang: Causal inference with interference
Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H.,

Ding, P., Miao, W., Jiang, Z. (2020). Causal Inference. Engineering.
http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016
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Thank You!

Kun Kuang

kunkuang@zju.edu.cn
Homepage: https://kunkuang.github.io/
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