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1 Introduction

Overview. There is now a growing body of research on formal algorithmic mod-
els of social procedures and interactions between rational agents. These models
attempt to identify logical elements in our day-to-day social activities. When in-
teractions are modeled as games, reasoning involves analysis of agents’ long-term
powers for influencing outcomes. Agents devise their respective strategies on how
to interact so as to ensure maximal gain. In recent years, researchers have tried
to devise logics and models in which strategies are “first class citizens”, rather
than unspecified means to ensure outcomes. Yet, these cover only basic models,
leaving open a range of interesting issues, e.g. communication and coordination
between players, especially in games of imperfect information. Game models are
also relevant in the context of system design and verification. In this article
we will discuss research on logic and automata-theoretic models of games and
strategic reasoning in multi-agent systems. We will get acquainted with the basic
tools and techniques for this emerging area, and provide pointers to the exciting
questions it offers.

Content. This article consists of 5 sections apart from the introduction. An
outline of the contents of the other sections is given below.

1. Section 2 (Exploring structure in strategies): A short introduction to
games in extensive form, and strategies. Discussion of some specific strate-
gies. Introduction to games of unbounded duration, and the motivation for
such games in the study of multi-agent systems.

2. Section 3 (Automata theory for strategies in games): Backward in-
duction in games on finite graphs with reachability objectives. Going from
memoryless strategies to bounded memory strategies for regular objectives.
Strategies as finite state automata, and automata models for temporal logics.

3. Section 4 (Game logic and its descendants): Rohit Parikh’s game logic
- a discussion on decidability, non-normality, the role of iteration and dual



operators, an embedding into the mu-calculus; multi-player situations, par-
allel games, coalitions.

4. Section 5 (Making strategies explicit): A short overview of various log-
ical frameworks that talk about strategies explicitly in the language, and
then moving on to detailed logical studies of structured strategizing in ex-
tensive form games.

5. Section 6 (Dynamics of large games): Discussion of various issues re-
garding the study of strategy structure under perfect and imperfect informa-
tion in large games, e.g. strategy switching, stabilizing strategies, and others.
A preliminary look into dynamic games forms.

Lecture slides on these materials can be found at the followng location:
http://www.ai.rug.nl/~sujata/documents.html.
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2 Exploring structure in strategies

2.1 Unknown player types

Suppose that you are in a crowded room, with perhaps more than 50 persons
in it, and everyone in the room participates in a game. You are to pick a real
number in the range 0 to 100. The one who comes closest to two-thirds of the
average gets a prize. What number would you pick? If the game were played
repeatedly, would you play the same way each time? If Ms X were to win the
prize using number x, would that influence you the next time you played?

Game theory advises, rather insists, that you pick 0. The reasoning is as
follows: two-thirds of the average can never exceed 67, so all numbers above 67
are eliminated. Since nobody is going to write numbers above 67, two thirds
of the resulting average will never exceed 44. Hence all numbers above 44 are
eliminated. And so on.

However, if we actually play the game,3 we find that the prize goes not to 0
but some number around 20.4 Why does this happen? One reasonable conjecture
is that people reason one level down but not further. But reasons aside, empirical
evidence of this kind is often cited to attack a standard assumption in game
theory: common knowledge of rationality.

Our motive in considering this game is different. It is to point out that
something well known in game theory: strategizing during play is different from
reasoning about existence of (optimal) strategies. Played strategies have con-
siderable structure, they tend to be heuristic, partial, based on consideration of
other player types, evolve in time and are often composed using other partial
strategies that work in other game contexts.

In this game, the number you pick is determined by your own reasoning
ability, your conception of alternate player types, your expectation of how other
player types are distributed and how you revise such expectation when the result
is announced. Note that even if the game is repeated, unless the announced
result is close to 0, you get little actual information about how player types are
distributed.

Apart from heuristic play, a structure theory of strategies can offer mathe-
matical insight as well, and this is illustrated by the next example.

2.2 The Game of Nim

In this game we begin with m heaps, each heap having a non-zero number of
counters. Two players take turns alternately, a move consisting of picking heap
i, and removing a non-zero number of counters in it. A player whose turn it is
to move but has no move available, loses.

3 The second author has done this many times, among university students, researchers,
school children. The results are similar.

4 In ESSLLI 2011 in Ljubljana, the prize – chocolate – went to 18.54.
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Proposed and completely solved by Bouton in 1902 [Bou02], the game nev-
ertheless has attracted considerable interest. It is an example of a bipartisan5

two-player zero-sum game of perfect information, but more than that, every such
game can be reduced to Nim [BCG01]. Rather than kill the reader’s joy by pro-
viding a solution, we merely point out some interesting mathematical structure
in the space of Nim strategies.

Suppose you are faced with the situation (1, 1). This is a losing position for
you, since no matter which heap you reduce (to empty), the opponent can move
and then you have no move. Now, (2, 2) is also losing since no matter what
move you make, the opponent can copy that move and bring you to (1, 1) or
the empty configuration. Thus, in general, we can argue that the Nim position
(m,n) is winning to a player iff m 6= n.

But this means that (m,m, n) is winning since you can remove the third heap
entirely and present a losing position to the opponent. Similarly (m,m, n, n) is
losing: we can consider it as (m,m) + (n, n) or (m,n) + (m,n), consisting of two
subgames. Note that player II has a copycat strategy in the other subgame and
hence cannot lose.

In general, if game g has possible subgames g1, . . . , gm and game h has pos-
sible subgames h1, . . . , hn we can define the sum game g + h to consist of the
subgames g1 +h, . . . , gm +h, g+h1, . . . , g+hn. That is, the player either moves
in g or in h.

Let 0 denote the game with the null heap. Clearly this is a losing game. We
would expect that g + 0 = g for any game g, but this requires a notion of game
equivalence.

Definition 2.1. Two games g, h are said to be equivalent, written g ≡ h if
and only if for any other game j, the sum g + j is losing if and only if h+ j is
losing.

It is easy to verify that ≡ is indeed an equivalence relation. We can follow
the definition carefully and show that:

Proposition 2.1. If g is a losing game, then g ≡ 0.

Therefore a losing game can be added to any game without changing its
win/lose status. This is a simple observation that can be immensely useful. For
example (1, 2, 3) is losing, since any move leads to the form (m,n) or (m,m, n)
with m 6= n which, we have seen, is winning. Also (4, 5) is winning, and by the
proposition above, (1, 2, 3, 4, 5) is winning, which is hard to prove directly. Thus
exploiting structure in strategies simplifies analysis greatly.

How much structure can we actually find? The following proposition offers a
clue.

Proposition 2.2. (The copycat principle): For any Nim game g, we have:
g + g = 0.

Thus every game acts as its own additive inverse, and yes, Nim games form
a group under the sum operation, with every element acting as its own inverse.
5 A game in which both players have identical sets of moves.
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2.3 Exploring structure

We have merely touched on algebraic structure in combinatorial games; the so-
called Sprague - Grundy theory has much more to offer [BCG01].

But extensive form games in general exhibit such structure as well. We saw
that the analysis above proceeded by considering subgames and how player
moves result in one subgame or another. When games have temporal struc-
ture, the history of such moves, and how much of history is/can be recorded by
players can be important, and this dictates structure in strategies as well. In
particular, we can study memory structure: how much memory is needed for a
particular strategy. This suggests a realisation of strategies by way of finite state
automata (or more precisely, transducers).

Another kind of structure we can consider is compositional. In this view,
players have a library of simple heuristics that work in some situations but not
always. Then they compose these online during play, based on and in response
to other players’ moves. This is akin to how programs are composed in program-
ming languages. Here we are led to iterative structure and the kind of reasoning
employed in dynamic logics.

While these considerations apply to games with large temporal structure,
there are also games with large spatial structure. These are games with a large
number of players, and like in the game for guessing two-thirds of the average,
players have only expectations on player type distributions and act on that basis.
Strategy structure involves heuristics, neighbourhood switching, and so on.

These are generic, independent of specific games. When we consider games
arising from specific classes of applications, these application domains offer fur-
ther structure as well. We will discuss some of these domains; but our main
attempt is not to state (the obvious) that game theory is widely applicable,
but that strategies are worth studying as first class citizens in a wide variety of
contexts, rather than asserting their mere existence in those contexts.

2.4 Some application domains

To motivate our studies from a broader perspective, we now provide a brief look
at some of the application domains. Studying structured strategies might throw
some light into understanding the actions, interactions that an individual or a
group considers to converge to a certain outcome or to attain stabilization in a
system.

Negotiations From mundane talks between partners about who will fetch the
children from school and who will cook dinner, through sale of an apartment
while the seller is trying to hide from the buyer that she has already bought a
new house, to the full-fledged multi-party multi-issue negotiations in Kyoto and
Copenhagen about climate control – negotiation is everywhere. It is a complex
skill that is not easily learnt, and hence could be broken off quite easily, even
when they have potential for a win-win solution. Moreover, in many negotiations
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that do result in an agreement, it may happen that one or more participants
could have done better for themselves [Rai82,FUP95,RRM02].

Consider the negotiations in the second phase of the Strategic Arms Lim-
itation Treaty (SALT) during the 1970’s (http://en.wikipedia.org/wiki/
Strategic_Arms_Limitation_Talks) between the Soviets and the Americans
in the cold war era, or, the Camp David negotiations between Israel and Egypt
in 1978 with US President Carter acting as a mediator (http://en.wikipedia.
org/wiki/Camp_David_Accords). These situations provide interesting examples
of strategic communication and decision making under imperfect information
where composite strategies come into play. We will come back to the discussion
on strategic communication in games of imperfect information in Section 6.

Cognitive studies In cognitive science, the term ‘strategy’ is used much more
broadly than in game theory. A well-known example is formed by George Polya’s
problem solving strategies (understanding the problem, developing a plan for a
solution, carrying out the plan, and looking back to see what can be learned)
[Pol45]. Nowadays, cognitive scientists construct fine-grained theories about hu-
man reasoning strategies [Lov05,JT07], based on which they construct computa-
tional cognitive models. These models can be validated by comparing the model’s
predicted outcomes to results from experiments with human subjects [And07].

Various cognitive scientists conduct behavioral experiments to investigate
how well humans are able to apply first and second order reasoning. First order
reasoning involves reasoning about first order epistemic attributions, e.g. “You
believe that I am holding a red card”, whereas second order reasoning involves
second order attributions, e.g. “I believe that you believe that I am holding a
red card”. Researchers present participants with strategic games to investigate
higher-order social reasoning [HZ02,MMRV10], based on the strategic reasoning
applied in such games. Based on these strategic game experiments, computa-
tional cognitive models are built to describe human strategic reasoning. It has
been proposed how formal models of strategic reasoning could aid in building
up such cognitive models based on experimental findings [GMV10,GM11].

Besides, there are various other interactive situations where such complex
strategic reasoning comes into play when the temporal or the spatial structure
of the game is large enough. Whether we think of obtaining effective bargaining
protocols, bidding in different types of auctions, stabilizing entering firms in
existing markets, obtaining cartel agreement among competing firms, effective
and efficient strategies are needed everywhere.

The concept of strategies also plays a role in language use and interpreta-
tion. For example, pragmatics can be explained in terms of a sender and receiver
strategizing to understand and be understood, on the basis of concise and ef-
ficient messages. Also, evolutionary game theory has been used to explain the
evolution of language; for example, it has been shown that in signaling games,
evolutionarily stable states occur when the sender’s strategy is a one-one map
from events to signals, and the receiver’s strategy is the inverse map [TN00].
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With this brief introduction to the various application areas, we will now
move on to more technical discussions on ‘structured strategic reasoning’.
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3 Automata theory for strategies in games

Consider a game where two players take turns as follows. Player I picks a natural
number, II responds with a larger number, then I picks a further larger number,
and so on. If the resulting infinite play is in a given set A ⊆ Nω, then player I
wins, otherwise II wins (and I loses). Such two-player zero-sum infinite games of
perfect information have a long and rich history.

We say that such a game A is determined if either of the two players has a
winning strategy. In the 1930’s, Ulam asked for a characterization of determined
games. It did not take long for people to realize that non-determined games
exist. In 1953, the Gale-Stewart theorem [GS53] established determinacy of open
games (open in the Baire topology). This led to a series of theorems culminating
in Martin’s theorem asserting determinacy of Borel games [Mar75].

In the sequel, we are not interested in infinite games in all their generosity,
but we do wish to consider games of infinite duration. One reason for this is our
consideration of games with large temporal structure, even finite ones.

A classic example of such a game is the game of chess. Zermelo showed
in [Zer13] that chess is determined, i.e. from every game position, either there
exists a (pure) strategy for one of the two players (white or black) guaranteeing
that she will win or each one of the two players has a strategy guaranteeing at
least a draw. However, given any game position, we do not know which of the
three alternatives is the correct one. For games like Hex, it is known that the
first player can force a win [Gal79] but nonetheless a winning strategy is not
known. Again, in such situations, rather than be content with reasoning about
games using the functional notion of strategies, one needs to reason about strate-
gies themselves. For instance, most of the chess playing programs use heuristics
which are basically partially specified strategies. A library of such specifications
is developed and during the course of play, the actual strategy is built up by
composing various partial strategies.

Crucially, a resource bounded player who reasons locally in a large game like
chess does not reason with an unknown finite tree of fixed size, but with one
of unbounded size, a potentially infinite tree. We consider such reasoning to be
inescapable.

Another point raised above is that strategies tend to be partial. A strategy
is a function from the set of partial plays to moves: it advises a player at a game
position on the choice she can make. In a large game, this amounts to a com-
plete specification of behaviour in all possible game situations. But then in such
a game, one player’s knowledge of the strategies employed by the other is nec-
essarily partial. Rational play requires much finer analysis since strategies have
structure that depends on the player’s observations of game positions, history of
play and the opponent’s apparent strategies. We suggest that study of structure
in strategies is relevant even in finite, determined, but large, zero-sum games,
such as Chess.

Below, we suggest that standard automata theoretic techniques can be em-
ployed to usefully specify and analyze partial strategies in non-zero games on
graphs. We propose a syntactic framework for strategies in which best response
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can be algorithmically determined, and a simple modal logic in which we can
reason about such strategies. This proposal is intended more as an illustration of
such analysis; ideally, we need a “programming language” for strategies, whose
structure should be determined empirically by how well they describe interesting
heuristics employed in many classes of games that arise in applications mentioned
above.

We consider only finitely-presented infinite games. For this, it is convenient
to conceive of the game as played on a finite graph, and the game tree obtained
by its unfolding.

3.1 Games on graphs and strategies

We begin with a description of the game arena. We use the graphical model for
extensive form turn-based games, where at most one player gets to move at each
game position.

Game Arena

Let N = {1, 2} be the set of players and Σ = {a1, a2, . . . , am} be a finite set of
action symbols, which represent moves of players.

A game arena is a finite graph G = (W 1,W 2,−→, w0) where W i is the
set of game positions of player i for i ∈ N . Let W = W 1 ∪W 2. The transition
function −→: (W ×Σ)→W is a partial function also called the move function
and w0 is the initial node of the game. Let i = 2 when i = 1 and i = 1 when
i = 2.

Let the set of successors of w ∈ W be defined as
→
w = {w′ ∈ W | w a−→ w′

for some a ∈ Σ}. We assume that for all game positions w,
→
w 6= ∅.

In an arena, the play of a game can be viewed as placing a token on w0.
If player i owns the game position w0 (i.e w0 ∈ W i), then she picks an action
‘a’ which is enabled for her at w0 and moves the token to w′ where w0

a−→ w′.
The game then continues from w′. Formally, a play in G is an infinite path
ρ : w0a0w1a1 · · · where ∀j : wj

aj−→ wj+1. Let Plays denote the set of all plays
in the arena.

Games and Winning Conditions Let G be an arena as defined above. The
arena merely defines the rules about how the game progresses and terminates.
More interesting are the winning conditions of the players, which specify the game
outcomes. Since we consider non-zero sum games, players’ objectives need not be
strictly conflicting, and each player has a preference relation inducing an ordering
over the set of valid plays. The game is specified by presenting the game arena
along with the preference relation for each player. Let �i ⊆ (Plays × Plays) be
a complete, reflexive, transitive binary relation denoting the preference relation
of player i for i ∈ N . Then the game G is given as, G = (G, {�i}i∈N ).
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In general, the preference relation need not have a finite presentation, and we
restrict our attention to finite state preferences. (This is because in the applica-
tions we have in mind, as in network games, desired or preferred plays are easily
expressed as formulas of temporal logics.) Thus, the preferences of players are
presented as finite state evaluation automata, with Muller acceptance conditions.

LetM = (R,∆, r0) be a deterministic automaton with finite set of states R,
initial state r0 ∈ R and transition function ∆ : R×W ×Σ → R. The evaluation
automaton is given by: E = (M, {�i}i∈N ) where �i ⊆ (F × F ) is a total order
over F = 2R \ ∅ for i ∈ N .

A run of E on a play ρ : s0a0 · · · ∈ Plays is a sequence of states ϕ : r0r1 · · ·
such that ∀i : 0 ≤ i < n, we have ri+1 = ∆(ri, si, ai). Let inf (ϕ) denote the
set of states occurring infinitely often in ϕ. The evaluation automaton E induces
a preference ordering on Plays in the following manner. Let ρ : s0a0s1 · · · and
ρ′ : s0a′0s

′
1 · · · be two plays. Let the run of E on ρ and ρ′ be ϕ : r0r1 · · · rn and

ϕ′ : r0r′1 · · · r′n respectively. For i ∈ N , we have ρ �i ρ′ iff inf (ϕ) �i inf (ϕ′). A
game is presented as G = (G, E).

We will also be interested in binary evaluation automata which specify least
outcomes for player i. Such a automaton is given by E iF , where F ∈ 2R: for every
F ′ ∈ 2R, if F �i F ′, it is taken to be “winning” for player i, and every F ′′ 6= F
such that F ′′ �i F is taken to be “losing”. Such an automaton checks if i can
ensure an outcome which is at least as preferred as F . Note that the terminology
of win/loss is only to indicate a binary preference for player i, and applies even
in the context of non-zero sum games.

Thus we have game arenas, with players’ preference on plays. We now discuss
strategies of players.

Strategies Let GT denote the tree unfolding of the arena G. We use s, s′ to
denote the nodes in GT . A strategy for player 1, µ = (Wµ,−→µ, s0) is a maximal
connected subtree of GT where for each player 1 node, there is a unique outgoing
edge and for the other player every move is included. That is, for s ∈ Wµ the
edge relation satisfies the following property:

– if s ∈ W 1
µ then there exists a unique a ∈ Σ such that s a−→µ s

′, where we
have s a−→T s

′.
– if s ∈W 2

µ , then for each s′ such that s a−→T s
′, we have s a−→µ s

′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. We will use µ
to denote a strategy of player 1 and τ a strategy of player 2. A strategy profile
〈µ, τ〉 defines a unique path ρτµ in the arena G.

In games with overlapping objectives, the common solution concept employed
is that of an equilibrium strategy profile [Nas50]. A profile of strategies, one for
each player, is said to be in equilibrium if no player gains by unilaterally deviating
from his strategy. The notion of equilibrium can be formally defined as follows.
Let µ denote a strategy of player 1 and τ denote a strategy of player 2.

– µ is the best response for τ iff ∀µ′ ∈ Ω1, ρτµ′ �1 ρτµ.
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– τ is the best response for µ iff ∀τ ′ ∈ Ω2, ρτ
′

µ �2 ρτµ.
– 〈µ, τ〉 is a Nash equilibrium iff µ is the best response for τ and τ is the best

response for µ.

The natural questions that are of interest include:

– Given a strategy τ of player 2, what is the best response for player 1?
– Given a strategy profile 〈µ, τ〉, is it a Nash equilibrium?
– Does the game possess a Nash equilibrium?

Clearly, if we can answer the first question, we can answer the second as
well. In any case, to study these questions algorithmically, we need to be able
to present the preferences of players and their strategies in a finite fashion. We
have evaluation automata presenting preferences; we now proceed to a syntax
for strategies.

3.2 Strategy specification

We conceive of strategies as being built up from atomic ones using some gram-
mar. The atomic case specifies, for a player, what conditions she tests for before
making a move. We can associate with the game graph a set of observables for
each player. One elegant method then, is to state the conditions to be checked as
a past time formula of a simple tense logic over the observables. The structured
strategy specifications are then built from atomic ones using connectives. We
crucially use an implication of the form: “if the opponent is apparently playing
a strategy π then play σ”.

Below, for any countable set X, let Past(X) be sets of formulas given by the
following syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.

Syntax Let P i = {pi0, pi1, . . .} be a countable set of observables for i ∈ {1, 2}
and let P = P 1 ∪ P 2. The syntax of strategy specifications is then given by:

Strat i(P i) := [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1

where π ∈ Strat i(P 1 ∩ P 2) and ψ ∈ Past(P i). Observe that since the atomic
specifications are always indexed by the player identity, it cannot be the case
that a strategy specification σ ∈ Strat i(P i) ∩ Strat ı(P ı).

The idea is to use the above constructs to specify properties of strategies. For
instance the interpretation of a player i specification [p 7→ a]i where p ∈ P i is
to choose move “a” at every player i game position where p holds. At positions
where p does not hold, the strategy is allowed to choose any enabled move.
σ1 + σ2 says that the strategy of player i conforms to the specification σ1 or σ2.
The construct σ1 · σ2 says that the strategy conforms to specifications σ1 and
σ2.
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The specification π ⇒ σ says, at any node player i sticks to the specification
given by σ if on the history of the play, all moves made by ı conform to π.
In strategies, this captures the aspect of players’ actions being responses to
the opponent’s moves. The opponent’s complete strategy may not be available,
the player makes a choice taking into account the apparent behaviour of the
opponent on the history of play.

Let Σ = {a1, . . . , am} be the set of all moves, we also make use of the
following abbreviation.

– null i = [> 7→ a1]i + · · ·+ [> 7→ am]i.

where > = p ∨ ¬p for an observable p ∈ P i. It will be clear from the semantics
that any strategy of player i conforms to null i, or in other words this is an empty
specification. The empty specification is particularly useful for assertions of the
form “there exists a strategy” where the property of the strategy is not of any
relevance.

Semantics Given any sequence ξ = t0t1 · · · tm, V : {t0, · · · , tm} → 2X , and k
such that 0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted
ξ, k |= ψ can be defined as follows:

– ξ, k |= p iff p ∈ V (tk).
– ξ, k |= ¬ψ iff ξ, k 6|= ψ.
– ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.
– ξ, k |= 3-ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

We consider the game arena G along with a valuation function for the ob-
servables V : W → 2P . We assume the presence of two special propositions τi for
each i ∈ N which specify at a game position, which player’s turn it is to move,
i.e. τi ∈ V (w) iff w is a player i game position. Given a strategy µ of player i
and a node s ∈ µ, let ρs : s0a0s1 · · · sm = s be the unique path in µ from the
root node to s. For a strategy specification σ ∈ Strat i(P i), we define when µ
conforms to σ (denoted µ |=i σ) as follows:

– µ |=i σ iff for all player i nodes s ∈ µ, we have ρs, s |=i σ.

where we define ρs, sj |=i σ for any player i node sj in ρs as,

– ρs, sj |=i [ψ 7→ a]i iff ρs, sj |= ψ implies outρs
(sj) = a.

– ρs, sj |=i σ1 + σ2 iff ρs, sj |=i σ1 or ρs, sj |=i σ2.
– ρs, sj |=i σ1 · σ2 iff ρs, sj |=i σ1 and ρs, sj |=i σ2.
– ρs, sj |=i π ⇒ σ1 iff for all player i nodes sk ∈ ρs such that k ≤ j, if
ρs, sk |=i π then ρs, sj |=i σ1.

Above, π ∈ Strat i(P 1∩P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m, outρs
(si) =

ai and outρs
(s) is the unique outgoing edge in µ at s.
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Remarks Note that we do not have negation in specifications. One reason is
that they are partial, and hence the semantics is not immediate. If we were to
consider a specification of the form π ⇒ σ, we could interpret this as: if player
has seen that opponent has violated π in the past, then play σ. This seems rather
unnatural, and hence, for the present, we are content to leave negation aside.
Note that we do have negation in tests in atomic specifications, and later we will
embed these specifications into a modal logic (with negation on formulas).

When we consider repeated or multi-stage games, we have strategy switch-
ing, whereby players receive payoffs at specified points, and depending on the
outcomes, decide on what new strategies to adopt later. Then it makes sense to
include specifications whereby a player conforms to a strategy until some ob-
servable change, and then switches to another strategy. In this context, we have
(a form of) sequential composition as well as iteration. However, operators are
best added after a systematic study of their algebraic properties. We stick to a
simple presentation here since our main aim is only to describe the framework.
As we will see below, any set of specifications that allows effective automaton
consruction will do.

Clearly, each strategy specification defines a set of strategies. We now show
that it is a regular set, recognizable by a finite state device. In the spirit of
prescriptive game theory, we call them advice automata.

Advice Automata For a game graph G, a nondeterministic advice automaton
for player i is a tuple A = (Q, δ, o, I) where Q is the set of states, I ⊆ Q is
the set of initial states, δ : Q × W × Σ → 2Q is the transition relation, and
o : Q×W i → Σ, is the output or advice function.

The language accepted by the automaton is a set of strategies of player i.
Given a strategy µ = (Wµ,−→µ, s0) of player i, a run of A on µ is a Q labelled
tree T = (Wµ,−→µ, λ), where λ maps each tree node to a state in Q as follows:
λ(s0) ∈ I, and for any sk where sk

ak−→µ s
′
k, we have λ(s′k) ∈ δ(λ(sk), sk, ak).

A Q-labelled tree T is accepted by A if for every tree node s ∈ W i
µ, if

s
a−→T s′ then o(λ(s)) = a. A strategy µ is accepted by A if there exists an

accepting run of A on µ.
It is easy to see that any bounded memory strategy can be represented using

a deterministic advice automaton. In such a framework we can ask, given a
bounded memory strategy for player 2 represented by a deterministic strategy
automaton B, can we compute the best response for player 1?

Proposition 3.1. Given a game G = (G, E) and a deterministic advice automa-
ton B for player 2, the best response for player 1 can be effectively computed.

The proposition is proved easily. For each F ∈ 2R, we can construct a nonde-
terministic automaton AF which explores paths of G as follows. It consults B to
pick player 2’s moves and simply guesses 1’s moves. It runs the binary evaluation
automaton E1

F for player 1 in parallel and checks if the run is winning for player
1. Now, we can enumerate F ∈ 2R in such a way that those higher in �1 appear
earlier in the enumeration. We try automata AF in this order.
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Therefore, given a strategy profile presented as advice automaton for each
of the players, we can also check if a strategy profile constitutes a Nash equi-
librium. However, we are interested in strategy specifications which are partial
and hence constitute nondeterministic advice automata. The following lemma
relates structured strategy specifications to advice automata.

Lemma 3.1. Given a player i ∈ {1, 2} and a strategy specification σ, we can
construct an advice automaton Aσ such that µ ∈ Lang(Aσ) iff µ |=i σ.

Proof. The construction of automata is inductive, on the structure of specifica-
tions. Note that the strategy is implemented principally by the output function
of the advice automaton.

For a strategy specification σ, let SF (σ) denote the subformula closure of σ
and SFψ(σ) denote the Past subformulas in σ. Call R ⊆ SFψ(σ) an atom if it is
propositionally consistent and complete: that is, for every ¬γ ∈ SFψ(σ), ¬γ ∈ R
iff γ 6∈ R, and for every γ1 ∨ γ2 ∈ SFψ(σ), γ1 ∨ γ2 ∈ R iff γ1 ∈ R or γ2 ∈ R.

Let AT σ denote the set of atoms. Let C0 = {C ∈ AT σ| there does not exist
any 3-ψ ∈ C}. For C,D ∈ AT σ, define C −→ D iff for all 3-ψ ∈ SFψ(σ), the
following conditions hold.

– ψ ∈ C ⇒ 3-ψ ∈ D
– 3-ψ ∈ D ⇒ ψ ∈ C or 3-ψ ∈ C.

We proceed by induction on the structure of σ. We construct automata for
atomic strategies and compose them for complex strategies.
(σ ≡ [ψ 7→ a]): The automaton works as follows. Its states keep track of past
formulas satisfied along a play as game positions are traversed and that the
valuation respects the constraints generated for satisfying ψ. The automaton
also guesses a move at every step and checks that this is indeed a when ψ holds;
in such a case this is the output of the automaton. Formally:
Aσ = (Qσ, δσ, oσ, Iσ), where

– Qσ = AT σ ×Σ.
– Iσ = {(C, x)|C ∈ C0, V (s0) = C ∩ Pσ, x ∈ Σ}.
– For a transition s

a−→ s′ in G, we have:
δσ((C, x), s, a) = {(C ′, y)|C −→ C ′, V (s′) = C ′ ∩ Pσ, y ∈ Σ}.

– o((C, x), s) =
{
a if ψ ∈ C
x otherwise

We now prove the assertion in the lemma that µ ∈ Lang(Aσ) iff µ |=i σ.
(⇒) Suppose µ ∈ Lang(Aσ). Let T = (W 1

µ ,W
2
µ ,−→T , λ) be the Q-labelled

tree accepted by Aσ. We need to show that for all s ∈ Wµ, we have ρs, s |= ψ
implies out(s) = a.

The following claim, easily proved by structural induction on the structure of
ψ, using the definition of −→ on atoms, asserts that the states of the automaton
check the past requirements correctly. Below we use the notation ψ ∈ (C, x) to
mean ψ ∈ C.
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Claim. For all s ∈Wµ, for all ψ′ ∈ SFψ(σ), ψ′ ∈ λ(s) iff ρs, s |= ψ′.

Assume the claim and consider any s ∈ Wµ. We have ρs, s |= ψ implies
ψ ∈ λ(s). By the definition of o, we have o(λ(s), s) = a.

(⇐) Suppose µ |=1 [ψ 7→ a]. From the semantics, we have ∀s ∈W 1
µ , ρs, s |= ψ

implies out(s) = a. We need to show that there exists a Q-labelled tree accepted
by Aσ. For any s let the Q-labelling be defined as follows. Fix x0 ∈ Σ.

– For s ∈W 1
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, out(s)).

– For s ∈W 2
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, x0).

It is easy to check that λ(s) constitutes an atom and the transition relation
is respected. By the definition of o, we get that it is accepting.
(σ ≡ σ1 · σ2): By induction hypothesis there exist Aσ1 = (Qσ1 , δσ1 , oσ1 , Iσ1)
and Aσ2 = (Qσ2 , δσ2 , oσ2 , Iσ2) which accept all strategies satisfying σ1 and σ2

respectively. To obtain an automaton which accepts all strategies which satisfy
σ1 · σ2 we just need to take the product of Aσ1 and Aσ2 .
(σ ≡ σ1 + σ2): We take Aσ to be the disjoint union of Aσ1 and Aσ2 . Since the
automaton is nondeterministic with multiple initial states, we retain the intial
states of both Aσ1 and Aσ2 . If a run starts in an initial state of Aσ1 then it will
never cross over into the state space of Aσ2 and vice versa.
(σ ≡ π ⇒ σ′): By induction hypothesis we have Aπ = (Qπ, δπ, oπ, Iπ) which
accepts all player 2 strategies satisfying π and Aσ′ = (Qσ′ , δσ′ , oσ′ , Iσ′) which
accepts all player 1 strategies satisfying σ′.

The automaton Aσ has the product states of Aπ and Aσ′ as its states along
with a special state qfree . The automaton keeps simulating both Aπ, Aσ′ and
keeps checking if the path violates the advice given by Aπ, if so it moves into
state qfree from which point onwards it is “free” to produce any advice. Till π is
violated, it is forced to follow the transitions of Aσ′ .

Define Aσ = (Q, δ, o, I) where Q = (Qπ ×Qσ′) ∪ (qfree ×Σ). The transition
function is given as follows:

– For s ∈ W 1
µ , we have δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈ δπ(qπ, s, a) and q2 ∈

δσ′(qσ′ , s, a)}.
– For s ∈W 2

µ , we have:
• If oπ(qπ, s) 6= a, then δ((qπ, qσ′), s, a) = {(qfree , a)|a ∈ Σ}.
• If oπ(qπ, s) = a, then δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈ δπ(qπ, s, a) and
q2 ∈ δσ′(qσ′ , s, a)}.

– δ((qfree , x), s, a) = {(qfree , a)|a ∈ Σ}

The output function is defined as follows: For s ∈W 1
µ , o((qπ, qσ′), s) = oσ′(qσ′ , s)

and o((qfree , x), s) = x.
The automaton keeps simulating both Aπ, Aσ′ and keeps checking if the

path violates π. If so it moves into state qfree from which point onwards it is not
constrained to follow σ′.
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3.3 Best response

Since a strategy specification denotes a set of strategies satisfying certain proper-
ties, notions like strategy comparison and best response with respect to strategy
specifications need to be redefined.

Given a game G = (G, E) and a strategy specification π for player i, we can
have different notions as to when a specification for player i is “better” than
another.

– Better1(σ, σ′): if ∃F ∈ 2R,∃µ′ with µ′ |=i σ
′ such that ∀τ with τ |=i π, ρτµ′ is

winning with respect to E iF then ∃µ with µ |=i σ such that ∀τ with τ |=i π,
ρτµ is winning with respect to E iF .
The predicate Better1(σ, σ′) says that, for some (binary) outcome F , if there
is a strategy conforming to the specification σ′ which ensures winning E iF
then there also exists a strategy conforming to σ which ensures winning E iF
as well.

– Better2(σ, σ′): if ∃F ∈ 2R such that ∀µ′ with µ′ |=i σ
′, ∀τ with τ |=i π, ρτµ′

is winning with respect to E iF then ∀µ with µ |=i σ, ∀τ with τ |=i π, ρτµ is
winning with respect to E iF .
This notion is best understood contrapositively: for some (binary) outcome
F , whenever there is a strategy conforming to σ which is not winning for
E iF , there also exists a strategy conforming to σ′ which is not winning for
E iF . This can be thought of as a soundness condition. A risk averse player
might prefer this way of comparison.

To algorithmically compare strategies, we first need to be able to decide the
following questions. Let σ and π be strategy specifications for player i and player
i and E iF a binary evaluation automaton for player i.

– Does player i have a strategy conforming to σ which ensures a valid play
which is winning for i with respect to E iF , as long as player i is playing a
strategy conforming to π (abbreviated as ∃σ, ∀π : E iF )?

– Is it the case that for all strategies of player i conforming to σ, as long as
player i is playing a strategy conforming to π, the result will be a valid play
which is winning for i with respect to E iF (abbreviated as ∀σ, ∀π : E iF )?

We call this the verification question. The synthesis question is given π and E iF
to construct a specification σ such that ∃σ, ∀π : E iF holds.

Once we can show that the verification question is decidable and synthesis
possible, the game theoretic questions of interest include: For a game G = (G, E),

– Given strategy specifications σ and π, check if σ is a best response to π.
– Given a strategy specification profile 〈σ, π〉, check if it is a Nash equilibrium.
– Given a strategy specification π for player i and F ∈ F , synthesize (if pos-

sible) a specification σ for i such that ∃σ, ∀π : E iF holds.
– Given a strategy specification π for i, synthesize a specification σ such that
σ is the best response to π.
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The main theorem of the section is the following assertion.

Theorem 3.1. Given a game G = (G, E) and a strategy specification π for
player i,

1. The verification problem of checking whether for a player i strategy specifica-
tion σ and a binary evaluation automaton E iF , if ∃σ, ∀π : E iF and ∀σ, ∀π : E iF
holds in G is decidable.

2. For a binary evaluation automaton E iF , it is possible to synthesize (when one
exists), a deterministic advice automaton Ai such that Ai,∀π : E iF holds.

3. For a specification σ, checking if σ is the best response to π is decidable.
4. It is possible to synthesize a deterministic advice automaton Ai such that Ai

is the best response to π.

For an advice automaton Ai, we can define the restriction of G with respect
to Ai by removing all nodes and edges that are not reachable when play proceeds
according to Ai. Thus we can also define G |\Aπ, for a strategy specification π.
The restricted arena is no longer deterministic. However, for any player 2 node
in G |\Aπ there is exactly one action enabled.

(1): To check if ∃σ, ∀π : E iF holds, we build a non-deterministic tree au-
tomaton T which runs on G |\Aπ. For a 1 node, it guesses an action “a” which
conforms to σ and branches out on all a edges. For a 2 node, there is only one
action enabled in G |\Aπ, call the action b. The automaton branches out on all
b labelled edges. T runs E1

F in parallel to verify that all plays thus constructed
are winning for 1 with respect to E1

F . If T has an accepting run, then ∃σ, ∀π : E iF
holds in G.

(2): We want a deterministic advice automaton A1 which ensures that for all
strategies of 2 conforming to π the play is “winning” for player 1. We construct
a tree automaton T which mimics the subset construction to synthesize A1. The
states of T are the subsets of states of Aπ. At a game position of player 1, it
guesses a move and for every player 2 game position, it branches out on all the
action choices of Aπ where for each move the resulting new state is the subset
of states given by the nondeterministic transition relation of Aπ. T runs E1

F in
parallel and checks if all paths constitute a valid play and that the play is winning
for 1 with respect to E1

F . If there is an accepting run for T , then constructing
A1 is easy. The state space of A1 is the set of all subsets of the states of Aπ.
The transition relation is derived from the usual subset construction performed
by T . The output function basically follows the accepting run of T .

(3): Given σ and π to check if σ is the best response to π, we use the tree
automaton construction in (1) with a slight modification.

We enumerate the elements of 2R in such a way that those higher in �1

appear earlier in the enumeration. For each F , we construct a tree automaton
as in (1), the only difference being that the guesses made by T at player 1 game
positions are not restricted by σ. T runs E1

F in parallel to check if player 1 can
ensure F for all choices of 2 which conform to π. Since the evaluation automaton
is “complete”, the play eventually settles down in one of F ′ ∈ 2R. Therefore,
as we try elements of 2R in order, the tree automaton succeeds for some E1

F ′ .
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This gives us the “best” outcome which player 1 can guarantee. We then check
if ∃σ, ∀π : E1

F ′ holds in G. If it does then Aσ is a best response to Aπ.
This also implies that we can check whether a strategy profile (presented as

advice automata) constitutes a Nash equilibrium.
(4) is similar to (3). We enumerate 2R and find the “best” outcome that can

be achieved and using the synthesis procedure, synthesize an advice automaton
for this outcome.

This proof sketch hopefully gives the reader some idea of how automata
theory is employed gainfully in strategy synthesis. Note the essential use of
memory structure in strategies. For details, the reader is referred to [RS07].
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4 Game logic and its descendants

In Section 2 we have argued that resource bounded players strategize locally
using heuristic methods. This calls for a study of the compositional structure of
strategies where logic provides a useful tool. We now move on to the logical stud-
ies of compositional games and strategies. In this section we discuss composite
game structures, where strategies are embedded in the models of the proposed
logics. These strategies take up an existential role in giving meaning to the game
operators in the language. Studies on modeling strategies explicitly in the logical
language will be taken up in the next section.

To look at compositional structure in games, viewing games as programs
becomes useful. We first give a brief introduction to a logic of programs, based
on which different game logics were proposed.

4.1 Propositional Dynamic Logic

As mentioned in [HKT00], we can define a computer program as follows: a
recipe written in a formal language for computing desired output data from
given input data. Propositional Dynamic Logic (PDL) is a logic of programs
(non-deterministic) where programs are made explicit in the language. Complex
programs are built out of basic programs using some binary program constructs
like ∪ (choice) and ; (sequential composition) and unary construct ∗ (iteration).
For a detailed introduction to PDL, see [HKT00,BdRV01]. The language of PDL
is given as follows:

Definition 4.1. Given a set of atomic program terms Π and a set of atomic
propositions Φ, program terms π and formulas φ are defined inductively:

π := b | π;π | π ∪ π | π∗
ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | [π]ϕ,

where p ∈ Φ, and b ∈ Π.

If π1 and π2 are programs, the program π1∪π2 nondeterministically executes
π1 or π2, π1;π2 is a program that first executes π1 and then π2, π∗ is a program
that execute π a finite (possibly zero) number of times.

A model for the language of PDL, viz. a program model is of the form M =
〈 S, {Rπ : π is a program}, V 〉, where S is a non-empty set of states, each Rπ
is a binary relation over S, and V is a valuation assigning truth values to atomic
propositions in states. Alternatively, one can also think of Rπ’s as maps from
S to 2S . Let us now suppose that the relations corresponding to the composite
program constructs are constructed as follows:

Rπ1∪π2 := Rπ1 ∪Rπ2

Rπ1;π2 := Rπ1 ◦ Rπ2 (= {(x, y) : ∃z(Rπ1xz and Rπ2zy)})
Rπ∗ := (Rπ)∗, the reflexive transitive closure of Rπ
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Truth of a formula ϕ in a model M at a state s is defined as follows:

M, s |= p iff s ∈ V (p)
M, s 6|= ⊥
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
M, s |= [π]ϕ iff for all s′: Rπss′, M, s′ |= ϕ

As given earlier, Π denotes the set of basic programs. Let Π̂ be the smallest
set containing Π and closed under the program constructs ∪, ; and ∗. This is
the class of regular or finite-state programs. Kleene [Kle56] showed that these
operations suffice to capture all finite-state behaviours.

In the following we are not distinguishing between a program π and its in-
terpretation Rπ. As mentioned earlier, a program π can be thought of as a map
from S to 2S , π(s) denoting the set of states that the program may reach, when
started operation from s. Alternatively, if we were given a set of states X, we
can consider the program to be a mechanism that ‘achieves’ X starting from s.
If we consider X as a goal, a program then sounds like a strategy to achieve the
goal, and programs can be thought of as 1-player games.

Consider the program (a+b); (e+f). This refers to a player (say Nature) non-
deterministically choosing between actions a or b, followed by choosing actions
e or f . But, if we consider a second player in our discussion, the same composite
structure (a + b); (e + f), could be considered as a game between two players I
and II, where player I chooses to do either an a or b, and then player II chooses to
do e or f . One can then think of it as a sequential composition of two one player
games (a + b) and (e + f) with rôles of the player and the opponent ‘switched’
in the two games. This idea leads us to a propositional game logic (cf. Section
4.2), which is similar to program logic, but admitting a player and an opponent.

4.2 Game Logic

Game Logic (GL), which was proposed in [Par85] studies how a player’s ‘power’
evolves in a two-player game. We talk about two person zero sum games of
perfect information in this logic. Similar to the language of PDL, the language
of GL is defined as follows:

Definition 4.2. Given a set of atomic games Γ and a set of atomic propositions
Φ, game terms γ and formulas ϕ are defined inductively:

γ := g | ϕ? | γ; γ | γ ∪ γ | γd | γ∗
ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ,

where p ∈ Φ, and g ∈ Γ .

Here we consider a set of atomic games Γ , and the following constructs which
form new games: choice (γ ∪ γ′), dual (γd), sequential composition (γ; γ′), and
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iteration (γ∗). The game γd is obtained when the game γ is played with the
players switching rôles.

The intuitive reading of the formula 〈γ〉ϕ is ‘player 1 has a strategy in game γ
to ensure ϕ’. Here we only consider the final outcomes which players can enforce
in the games. This is modeled by the notion of effectivity relations between states
and sets of states. An effectivity relation Eg, corresponding to an atomic game
g, on a state space S is a subset of S × 2S whose intuitive reading is:

(s,X) ∈ Eg iff starting at s, in game g, player 1 can enforce the outcome
to be in the set X.

Definition 4.3. A game model is a structure M = (S, {Eg | g ∈ Γ}, V ), where
S is a set of states, V is a valuation assigning truth values to atomic propositions
in states, and for each g ∈ Γ , Eg ⊆ S × 2S. We assume that for each g, the
relations are upward closed under supersets (Monotonicity condition).

The truth definition for formulas ϕ in a model M at a state s is standard,
except for the modality 〈γ〉ϕ, and they are given as follows:

M, s |= p iff s ∈ V (p)
M, s 6|= ⊥
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= 〈γ〉ϕ iff there exists X ⊆ S : sEγX and for all x ∈ X :M, x |= ϕ.

The semantics is standard and is generally termed in the existing literature
as neighborhood models [Che80]. Suppose Eγ(X) = {s ∈ S | sEγX}. The
effectivity conditions for players in complex two-person games are as follows:

Eγ∪γ′(X) = Eγ(X) ∪ Eγ′(X)
Eγd(X) = S \ Eγ(S \X)
Eγ;γ′(X) = Eγ(Eγ′(X))
Eγ∗(X) = µY.X ∪ Eγ(Y )

Monotonicity of Eg’s is preserved under game operations and hence the fix-
point µY.X ∪ Eγ(Y ) always exists. A formula ϕ is satisfiable if there exists a
model M and a state s such that M, s |= ϕ. A formula ϕ is valid if it is true in
every model.

We should note here that in GL the two players cannot have winning strate-
gies for complementary winning positions, thus ¬(〈γ〉ϕ ∧ 〈γd〉¬ϕ) is a valid for-
mula, for every game γ. All games are determined, that is, in any game, one of
the players has a winning strategy . Thus, (〈γ〉ϕ∨〈γd〉¬ϕ) is also a valid formula
in this logic. The following gives an axiom system for this logic.
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Axiom system

(a) all propositional tautologies and inference rules

(b) reduction axioms:
〈γ ∪ γ′〉ϕ↔ 〈γ〉ϕ ∨ 〈γ′〉ϕ
〈γd〉ϕ↔ ¬〈γ〉¬ϕ
〈γ; γ′〉ϕ↔ 〈γ〉〈γ′〉ϕ
〈γ∗〉ϕ↔ ϕ ∨ 〈γ〉〈γ∗〉ϕ

Inference rules

(MP) ϕ, ϕ→ ψ (NG) ϕ→ ψ
ψ 〈γ〉ϕ→ 〈γ〉ψ

(IND) 〈γ〉ϕ→ ϕ
〈γ∗〉ϕ→ ϕ

Completeness and Decidability The soundness of the axiom system can
be proved easily. The system without the duality axiom can be proved to be
complete for the dual-free fragment of the logic [Par85]. The system without
the iteration axiom and rule can be proved to be complete for the iteration-free
fragment of the logic [Pau01]. In [Par85], Parikh conjectured that the system
presented is indeed complete for game logic. This remains an interesting open
problem.

The satisfiability problem for the logic above is EXPTIME-complete. This
is the same as that for PDL. Model checking game logic is equivalent to the
same problem for the modal µ-calculus. Complexity of model checking is in NP
∩ co-NP. The details of these results can be found in [Pau01]. A major open
problem asks if the complexity of model checking is in P.

4.3 Parallel composition: intersecting

In this section we study a parallel composition operator of two player games,
the underlying idea of which is to consider players’ powers while playing simul-
taneous games. In game theory, typical matrix games like ‘Prisoner’s Dilemma’
involve simultaneous moves for two players: each chooses independently from
the other, and the outcome may be viewed as the set of both moves. In another
setting, computer scientist use parallel games with simultaneous moves to model
concurrent processes.

Here, we will model simultaneous play of parallel games in terms of players’
abstract powers, without allowing for communication. Using ideas from propo-
sitional dynamic logic for concurrency [Gol92], a system is proposed where play-
ers’ powers in a parallel game can be reduced to their powers in the constituent
games. The details of this study can be found in [vBGL08].
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Effectivity relations for product games While considering simultaneous
games, we first note that games can produce complex outcome states, denoted by
sets read ‘conjunctively’ as in Concurrent Propositional Dynamic Logic (CPDL),
developed in [Gol92]. But in addition, players can also have choices leading to
sets of such sets, still read disjunctively at this second level as one does in GL (see
the intuitive reading of Eg in Section 4.2). With this idea, to have an intuitive
model for simultaneous games, we consider effectivity relations Eg for atomic
games g to be subsets of S × 22S

. Suppose X,U, T,W range over sets of sets of
states, t, w range over sets of states, and s, u range over states:

Effectivity relations, Ei (for player i) for composite games are given as follows:

sEIγ∪γ′X iff sEIγX or sEIγ′X
sEIIγ∪γ′X iff sEIIγ X and sEIIγ′X

sEIγdX iff sEIIγ X

sEIIγdX iff sEIγX

sEiγ;γ′X iff ∃U : sEiγU and for each u ∈
⋃
U , uEiγ′X

sEiγ×γ′X iff ∃T , ∃W : sEiγT and sEiγ′W

and X = {t ∪ w : t ∈ T and w ∈W}
As an illustration, we show how this format for computation of players’ pow-

ers fits an intuitive example of parallel games, for instance, simultaneous move
selection in a matrix game:

I

������
��2
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1 G 2

II

������
��3

333

3 H 4

To make things comparable, we now change earlier single outcomes s to
singleton states s. The powers of I in the game G are given by {{1}}, {{2}}
and that of II by {{1}, {2}}. Similarly, in the game H, the powers of I and II
are {{3}, {4}} and {{3}}, {{4}}, respectively. The powers of I and II in the
product game G × H are then formed by taking unions: {{1, 3}, {1, 4}}, {{2,
3}, {2, 4}} and {{1, 3}, {2, 3}}, {{1, 4}, {2, 4}}, respectively. Reading the inner
brackets as conjunctive, and the outer ones as disjunctive, this seems to fit our
intuitions.

We should note here that we now have separate effectivity relations for each
player. This is a result of considering simultaneous games where the determinacy
condition of GL (cf. Section 4.2) fails.

Concurrent Dynamic Game Logic The language of Concurrent Dynamic
Game Logic (CDGL) is given as follows:

Definition 4.4. Given a set of atomic games Γ and atomic propositions Φ,
game terms γ and formulas φ are defined inductively as:

γ := g | γd | γ; γ | γ ∪ γ | γ × γ
φ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ, i〉ϕ
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where we take p ∈ Φ, g ∈ Γ and i ∈ {I, II}.

For the sake of simplicity we are not considering ‘iteration’ here. The intended
meaning of the new game construct γ× γ′ is that the games γ and γ′ are played
in parallel, without communication. We are considering a very simple level of
abstraction in describing simultaneous games, and as such not considering the
complicated interaction aspects of parallel game playing.

Definition 4.5. A conjunctive game model is a structure M = (S, {Eig | g ∈
Γ}, V ), where S is a set of states, V is a valuation assigning truth values to
atomic propositions in states, and with basic relations Eig ⊆ S × 22S

assigned to
basic game expressions g, satisfying the conditions of Monotonicity, Consistency
and Non-Triviality, given below:

(C1) Monotonicity: If sEigX and X ⊆ X ′, then sEig X
′.

(C2) Consistency: If sEIgY and sEIIg Z, then Y and Z overlap.
(C3) Non-Triviality: No player can force the empty set.

These conditions can be seen as a few intuitive technical assumptions. In the
semantics of the language, the truth of a formula ϕ in M at a state s is defined
in the usual manner, with the following key clause for the game modality:

– M, s |= 〈γ, i〉ϕ iff ∃X : sEiγX and ∀x ∈
⋃
X :M, x |= ϕ.

Note that this squashes together the outcomes of all separate games, making
only local assertions at single states. An alternative option would be to evaluate
formulas at ‘collective states’, being sets of the original states. For a discussion,
see [vBGL08].

Naturally, this logic encodes facts about parallel games. Here are two, point-
ing toward an algebra of parallel games lying encoded here:

– 〈γ × γ′, i〉ϕ↔ 〈γ′ × γ, i〉ϕ
– 〈(γ × γ′)d, i〉ϕ↔ 〈γd × γ′d, i〉ϕ

Axiom System

a) all propositional tautologies and inference rules
b) if ` ϕ→ ψ then ` 〈g, i〉ϕ→ 〈g, i〉ψ
c) 〈g, I〉ϕ→ ¬〈g, II〉¬ϕ
d) ¬〈γ, i〉⊥
e) reduction axioms:
〈γ ∪ γ′, I〉ϕ↔ 〈γ, I〉ϕ ∨ 〈γ′, I〉ϕ
〈γ ∪ γ′, II〉ϕ↔ 〈γ, II〉ϕ ∧ 〈γ′, II〉ϕ
〈γd, I〉ϕ↔ 〈γ, II〉ϕ
〈γd, II〉ϕ↔ 〈γ, I〉ϕ
〈γ; γ′, i〉ϕ↔ 〈γ, i〉〈γ′, i〉ϕ
〈γ × γ′, i〉ϕ↔ 〈γ, i〉ϕ ∧ 〈γ′, i〉ϕ
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The completeness and decidability of CDGL has been shown in [vBGL08].
While this result may seem to be a good advocate for PDL-style ‘reductionism’,
the product axiom, 〈γ × γ′, i〉ϕ ↔ 〈γ, i〉ϕ ∧ 〈γ′, i〉ϕ also reflects the expressive
poverty of CDGL as an account of parallelism. On one hand there are no means
of stating truly collective properties of conjunctive states, on the other hand
there is no scope for talking about communication or transfer of information
while two or more games are played in parallel.

4.4 Parallel composition: interleaving

Consider a player playing against different opponents in two extensive form
games simultaneously. Can she then have a strategy in one game using in-
formation from the other? The famous example of playing chess against two
grandmasters simultaneously illustrates such reasoning. The common player in
the two games acts as a conduit for transfer of information from one game to
the other; thus game composition is essential for such reasoning. In this section
(based on [GRS10]), we consider a dynamic logic of extensive form games with
sequential and parallel composition in which such situations can be expressed.

Extensive form games Let N = {1, . . . , n} denote the set of players, we use
i to range over this set. For i ∈ N , we often use the notation ı to denote the set
N \{i}. Let Σ be a finite set of action symbols representing moves of players, we
let a, b range over Σ. For a set X and a finite sequence ρ = x1x2 . . . xm ∈ X∗,
let last(ρ) = xm denote the last element in this sequence.

Game trees Let T = (S,⇒, s0) be a tree rooted at s0 on the set of vertices S and
⇒ : (S×Σ)→ S is a partial function specifying the edges of the tree. The tree T
is said to be finite if S is a finite set. For a node s ∈ S, let

→
s= {s′ ∈ S | s a⇒s′ for

some a ∈ Σ}, moves(s) = {a ∈ Σ | ∃s′ ∈ S with s
a⇒s′} and ET (s) = {(s, a, s′) |

s
a⇒s′}. By ET (s) × x we denote the set {((s, x), a, (s′, x)) | (s, a, s′) ∈ ET (s)}.

The set x×ET (s) is defined similarly. A node s is called a leaf node (or terminal
node) if

→
s= ∅. The depth of a tree is the length of the longest path in the tree.

An extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) is a
tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function ⇒ specifies the moves enabled at a game position
and the turn function λ̂ : S → N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for
the sake of uniform presentation, we do not distinguish between leaf nodes and
non-leaf nodes as far as player labelling is concerned. An extensive form game
tree T = (T, λ̂) is said to be finite if T is finite. For i ∈ N , let Si = {s | λ̂(s) = i}
and let frontier(T ) denote the set of all leaf nodes of T . Let SLT = frontier(T )
and SNLT = S \ SLT . For a tree T = (S,⇒, s0, λ̂) we use head(T ) denote the
depth one tree generated by taking all the outgoing edges of s0.
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A play in the game T starts by placing a token on s0 and proceeds as follows:
at any stage if the token is at a position s and λ̂(s) = i then player i picks an
action which is enabled for her at s, and the token is moved to s′ where s a⇒s′.
Formally a play in T is simply a path ρ : s0a1s1 · · · in T such that for all j > 0,
sj−1

aj⇒sj . Let Plays(T ) denote the set of all plays in the game tree T .

Strategies A strategy for player i ∈ N is a function µi which specifies a move
at every game position of the player, i.e. µi : Si → Σ. A strategy µi can also
be viewed as a subtree of T where for each player i node, there is a unique
outgoing edge and for nodes belonging to players in ı, every enabled move is
included. Formally we define the strategy tree as follows: For i ∈ N and a player
i strategy µi : Si → Σ the strategy tree Tµi = (Sµi ,⇒µi , s0, λ̂µi) associated
with µi is the least subtree of T satisfying the following property: s0 ∈ Sµi ,

– For any node s ∈ Sµi ,
• if λ̂(s) = i then there exists a unique s′ ∈ Sµi and action a such that
s
a⇒µis′.

• if λ̂(s) 6= i then for all s′ such that s a⇒s′, we have s a⇒µis′.

Let Ωi(T ) denote the set of all strategies for player i in the extensive form
game tree T . A play ρ : s0a0s1 · · · is said to be consistent with µi if for all j ≥ 0
we have sj ∈ Si implies µi(sj) = aj .

Composing game trees We consider sequential and parallel composition of
game trees, for which, composing them amounts to concatenation and interleav-
ing, respectively. Concatenating trees is more or less straightforward, since each
leaf node of the first is now a root of the second tree. Interleaving trees is not
the same as a tree obtained by interleaving paths from the two trees, since we
wish to preserve choices made by players.

Sequential composition Suppose we are given two finite extensive form game
trees T1 = (S1,⇒1, s

0
1, λ̂1) and T2 = (S2,⇒2, s

0
2, λ̂2). The sequential composi-

tion of T1 and T2 (denoted T1; T2) gives rise to a game tree T = (S,⇒, s0, λ̂),
defined as follows: S = SNL1 ∪ S2, s0 = s01,

– λ̂(s) = λ̂1(s) if s ∈ SNL1 and λ̂(s) = λ̂2(s) if s ∈ S2.
– s

a⇒s′ iff:
• s, s′ ∈ SNL1 and s

a⇒1s
′, or

• s, s′ ∈ S2 and s
a⇒2s

′, or
• s ∈ SNL1 , s′ = s02 and there exists s′′ ∈ SL1 such that s a⇒1s

′′.

In other words, the game tree T1; T2 is generated by pasting the tree T2 at all
the leaf nodes of T1. The definition of sequential composition can be extended
to a set of trees T2 (denoted T1; T2) with the interpretation that at each leaf
node of T1, a tree T2 ∈ T2 is attached.
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Parallel composition The parallel composition of T1 and T2 (denoted T1||T2)
yields a set of trees. A tree t = (S,⇒, s0, λ̂) is in the set of trees T1||T2 provided:
S ⊆ S1 × S2, s0 = (s01, s

0
2),

– For all (s, s′) ∈ S:
• ET ((s, s′)) = ET1(s)× s′ and λ̂(s, s′) = λ̂1(s), or
• ET ((s, s′)) = s× ET2(s′) and λ̂(s, s′) = λ̂2(s′).

– For every edge s1
a⇒1s

′
1 in T1, there exists s2 ∈ S2 such that (s1, s2) a⇒(s′1, s2)

in t.
– For every edge s2

a⇒2s
′
2 in T2, there exists s1 ∈ S1 such that (s1, s2) a⇒(s1, s′2)

in t.
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������� b

��<<<<<

p2 p3

q1,2

c

������� d

��;;;;;

q2 q3

T1 T2

Fig. 1. atomic games

Examples Consider the trees T1 and T2 given in Figure 1. The sequential
composition of T1 and T2 (denoted T1; T2) is shown in Figure 2. This is obtained
by pasting the tree T2 at all the leaf nodes of T1.
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a

xxqqqqqqq b

&&MMMMMMM

q1,2

c

������� d

��;;;;; q1,2

c

������� d

��;;;;;

q2 q3 q2 q3

Fig. 2. T1; T2

Now consider two finite extensive form game trees T4 and T5 given in Figure
3. Each game is played between two players, player 2 is common in both games.

Note that we are talking about different instances of the same game (as
evident from the similar game trees) played between different pairs of players
with a player in common. Consider the interleaving of T4 and T5 where player
1 moves first in T4, followed by 2 and 3 in T5, and then again coming back to
the game T4, with the player 2-moves. This game constitutes a valid tree in the
set of trees defined by T4||T5 and is shown in Figure 4.
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Fig. 4. Game tree T

Due to space constraints, we have not provided the names for each of the
states in the parallel game tree, but they are quite clear from the context. The
game starts with player 1 moving from p1 in T4 to p2 or p3. Then the play moves
to the game T5, where player 2 moves to q2 or q3, followed by the moves of player
3. After that, the play comes back to T4, where player 2 moves once again.

These games clearly represent toy versions of “playing against two Grand-
masters simultaneously”. Players 1 and 3 can be considered as the Grandmasters,
and 2 as the poor mortal. Let us now describe the copycat strategy that can be
used by player 2, when the two games are played in parallel. The simultaneous
game (Figure 4), starts with player 1 making the first move a, say in the game
tree T4 (from (p1, q1)) to move to (p2, q1). Player 2 then copies this move in
game T5, to move to (p2, q2). The game continues in T5, with player 3 moving
to (p2, q4), say. Player 2 then copies this move in T4 (playing action c) to move
to (p4, q4). This constitutes a play of the game, where player 2 copies the moves
of players 1 and 3, respectively.

Evidently, if player 1 has a strategy in T4 to achieve a certain objective,
whatever be the moves of player 2, following the same strategy, player 2 can
attain the same objective in T5.

The logic For a finite set of action symbols Σ, let T (Σ) be a countable set
of finite extensive form game trees over the action set Σ which is closed under
subtree inclusion. That is, if T ∈ T (Σ) and T ′ is a subtree of T then T ′ ∈ T (Σ).
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We also assume that for each a ∈ Σ, the tree consisting of the single edge
labelled with a is in T (Σ). Let H be a countable set and h, h′ range over this
set. Elements of H are referred to in the formulas of the logic and the idea is to
use them as names for extensive form game trees in T (Σ). Formally we have a
map ν : H→ T (Σ) which given any name h ∈ H associates a tree ν(h) ∈ T (Σ).
We often abuse notation and use h to also denote ν(h) where the meaning is
clear from the context.

Syntax Let P be a countable set of propositions, the syntax is given by:

Γ := h | g1; g2 | g1 ∪ g2 | g1||g2
Φ := p ∈ P | ¬ϕ | ϕ1 ∨ ϕ2 | 〈g, i〉ϕ

where h ∈ H and g ∈ Γ .
In Γ , the atomic construct h specifies a finite extensive form game tree. Com-

posite games are constructed using the standard dynamic logic operators along
with the parallel operator. The game g1∪g2 denotes playing g1 or g2. Sequential
composition is denoted by g1; g2 and g1||g2 denotes the parallel composition of
games. The main connective 〈g, i〉ϕ asserts at state s that a tree in g is enabled
at s and that player i has a strategy subtree in it at whose leaves ϕ holds.

Semantics A model is a structure M = (W,→, λ̂, V ) where W is the set of
states (or game positions), → ⊆W ×Σ ×W is the move relation, V : W → 2P

is a valuation function and λ̂ : W → N is a player labelling function. These can
be thought of as standard Kripke structures whose states correspond to game
positions along with an additional player labelling function. An extensive form
game tree can be thought of as enabled at a certain state, say s of a Kripke
structure, if we can embed the tree structure in the tree unfolding of the Kripke
structure rooted at s. We make this notion more precise below.

Enabling of trees For a game position w ∈W , let Tw denote the tree unfolding
of M rooted at w. We say the game h is enabled at a state w if the structure
ν(h) can be embedded in Tw with respect to the enabled actions and player
labelling. Formally this can be defined as follows:

Given a state w and h ∈ H, let Tw = (SsM ,⇒M , λ̂M , s) and ν(h) = Th =
(Sh,⇒h, λ̂h, sh,0). The restriction of Tw with respect to the game tree h (denoted
Tw |\h) is the subtree of Tw which is generated by the structure specified by Th.
The restriction is defined inductively as follows: Tw |\ h = (S,⇒, λ̂, s0, f) where
f : S → Sh. Initially S = {s}, λ̂(s) = λ̂M (s), s0 = s and f(s0) = sh,0.

For any s ∈ S, let f(s) = t ∈ Sh. Let {a1, . . . , ak} be the outgoing edges of
t, i.e. for all j : 1 ≤ j ≤ k, t

aj⇒htj . For each aj , let {s1j , . . . , smj } be the nodes in

SsM such that s
aj⇒Ms

l
j for all l : 1 ≤ l ≤ m. Add nodes s1j , . . . , s

m
j to S and the

edges s
aj⇒slj for all l : 1 ≤ l ≤ m. Also set λ̂(slj) = λ̂M (slj) and f(slj) = tj .
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We say that a game h is enabled at w (denoted enabled(h,w)) if the tree
Tw |\ h = (S,⇒, λ̂, s0, f) satisfies the following properties: for all s ∈ S,

– moves(s) = moves(f(s)),
– if moves(s) 6= ∅ then λ̂(s) = λ̂h(f(s)).

Interpretation of atomic games To formally define the semantics of the logic,
we need to first fix the interpretation of the compositional games constructs. In
the dynamic logic approach, for each game construct g and player i we would
associate a relation Rig ⊆ (W × 2W ) which specifies the outcome of a winning
strategy for player i. However due to the ability of being able to interleave
game positions, in this setting we need to keep track of the actual tree structure
rather just the “input-output” relations, which is closer in spirit to what is
done in process logics [HKP82]. Thus for a game g and player i we define the
relation Rig ⊆ 2(W×W )∗ . For a pair x = (u,w) ∈ W ×W and a set of sequences
Y ∈ 2(W×W )∗ we define (u,w) · Y = {(u,w) · ρ | ρ ∈ Y }. For j ∈ {1, 2} we use
x[j] to denote the j-th component of x.

For each atomic game h and each state u ∈W , we define Rih(u) in a bottom-
up manner in such a way that whenever h is enabled at u, Rih(u) encodes the set
of all available strategies for player i in the game h enabled at u. The collection
of all such strategies that a player i can have, whenever the game h is enabled
at some state u ∈W is given by Rih.

Let h = (S,⇒, s0, λ̂) be a depth 1 tree with moves(s0) = {a1, . . . , ak} and
for all s 6= s0, moves(s) = ∅. For i ∈ N and a state u ∈ W , we define Rih(u) ⊆
2(W×W )∗ as follows:

– If λ̂(s0) = i then Rih(u) = {Xj | enabled(h, u) and Xj = {(u,wj)} where
u
aj→wj}.

– if λ̂(s0) ∈ ı then Rih(u) = {{(u,wj) | enabled(h, u) and ∃aj ∈ moves(s0)
with u

aj→wj}}.

For g ∈ Γ , let Rig =
⋃
w∈W Rig(w).

For a tree h = (S,⇒, s0, λ̂) such that depth(h) > 1, we define Rih(u) as,

– if λ̂(s0) = i then Rih(u) = {{(w,w) · Y } | ∃X ∈ Rihead(h) with (u,w) ∈
X,u

aj→w and Y ∈ Rihaj
}

– if λ̂(s0) ∈ ı then Rih(u) = {{(w,w) ·Y | ∃X ∈ Rihead(h) with (u,w) ∈ X,uaj→w
and Y ∈ Rihaj

}}.

Remark Note that a set X ∈ Rih can contain sequences such as (u,w)(v, x)
where w 6= v. Thus in general sequence of pairs of states in X need not represent
a subtree of Tw for some w ∈ W . We however need to include such sequences
since if h is interleaved with another game tree h′, a move enabled in h′ could
make the transition from w to v. A sequence % ∈ X is said to be legal if whenever
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(u,w)(v, x) is a subsequence of % then w = v. A set X ⊆ 2(W×W )∗ is a valid
tree if for all sequence % ∈ X, % is legal and X is prefix closed. For X which is
a valid tree we have the property that for all %, %′ ∈ X, first(%)[1] = first(%′)[1].
We denote this state by root(X). We also use frontier(X) to denote the frontier
nodes, i.e. frontier(X) = {last(%)[2] | % ∈ X}.

For a game tree h, although every set X ∈ Rih need not be a valid tree, we can
associate a tree structure with X (denoted T(X)) where the edges are labelled
with pairs of the form (u,w) which appears in X. Conversely given W ×W edge
labelled finite game tree T, we can construct a set X ⊆ 2(W×W )∗ by simply
enumerating the paths and extracting the labels of each edge in the path. We
denote this translation by f(T). We use these two translations in what follows:

Interpretation of composite games For g ∈ Γ and i ∈ N , we define Rig ⊆
2(W×W )∗ as follows:

– Rig1∪g2 = Rig1 ∪R
i
g2 .

– Rig1;g2 = {f(T(X); T ) | X ∈ Rig1 and T = {T(X1), . . . ,T(Xk)} where
{X1, . . . , Xk} ⊆ Rig2}.

– Rig1||g2 = {f(T(X1)||T(X2)) | X1 ∈ Rig1 and X2 ∈ Rig2}.

The truth of a formula ϕ ∈ Φ in a model M and a position w (denoted
M,w |= ϕ) is defined as follows:

– M,w |= p iff p ∈ V (w).
– M,w |= ¬ϕ iff M,w 6|= ϕ.
– M,w |= ϕ1 ∨ ϕ2 iff M,w |= ϕ1 or M,w |= ϕ2.
– M,w |= 〈g, i〉ϕ iff ∃X ∈ Rig such that X constitutes a valid tree, root(X) = w

and for all v ∈ frontier(X), M,v |= ϕ.

A formula ϕ is satisfiable if there exists a model M and a state w such that
M,w |= ϕ.

Let h1 and h2 be the game trees T4 and T5 given in Figure 3. The tree
in which the moves of players are interleaved in lock-step synchrony is one of
the trees in the semantics of h1||h2. This essentially means that at every other
stage if a depth one tree is enabled then after that the same tree structure is
enabled again, except for the player labelling. Given the (finite) atomic trees,
we can write a formula ϕLS which specifies this condition. If the tree h is a
minimal one, i.e. of depth one given by (S,⇒, s0, λ̂), ϕLSh

can be defined as,∧
aj∈moves(s0)

(〈aj〉> ∧ [aj ](∧aj∈moves(s0)〈aj〉>).
If player 1 has a strategy (playing a, say) to achieve certain objective ϕ

in the game h1, player 2 can play (copy) the same strategy in h2 to ensure ϕ.
This phenomenon can be adequately captured in the interleaved game structure,
where player 2 has a strategy (viz. playing a) to end in those states of the game
h1||h2, where player 1 can end in h1. So we have that, whenever h1 and h1||h2 are
enabled and players can move in lock-step synchrony with respect to the game
h1 (or, h2), 〈h1, 1〉ϕ→ 〈h1||h2, 2〉ϕ holds.
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Axiom system The main technical contribution of this section is a sound and
complete axiom system. For a ∈ Σ and i ∈ N , let T i

a be the tree defined as:
T i
a = (S,⇒, s0, λ̂) where S = {s0, s1}, s0

a⇒s1, λ̂(s0) = i and λ̂(s1) ∈ N . Let tia
be the name denoting this tree, i.e. ν(tia) = T i

a. For each a ∈ Σ we define,

– 〈a〉ϕ =
∧
i∈N (turni ⊃ 〈tia, i〉ϕ).

From the semantics it is easy to see that we get the standard interpretation
for 〈a〉ϕ, i.e. 〈a〉ϕ holds at a state u iff there is a state w such that u a→w and ϕ
holds at w.

Enabling of trees The crucial observation is that the property of whether a
game is enabled can be described by a formula of the logic. Formally, for h ∈ H
such that ν(h) = (S,⇒, s0, λ̂) and moves(s0) 6= ∅ and an action a ∈ moves(s0),
let ha be the subtree of T rooted at a node s′ with s0

a⇒s′. The formula h
√

(defined below) is used to express the fact that the tree structure ν(h) is enabled
and head

√

h to express that head(ν(h)) is enabled. This is defined as,

– If ν(h) is atomic then h
√

= > and head
√

h = >.
– If ν(h) is not atomic and λ̂(s0) = i then
• h

√
= turni ∧ (

∧
aj∈moves(s0)

(〈aj〉> ∧ [aj ]h
√

aj
)).

• head
√

h = turni ∧ (
∧
aj∈moves(s0)

〈aj〉>).

Due to the ability to interleave choices of players, we also need to define for
a composite game expression g, the initial (atomic) game of g and the game
expression generated after playing the initial atomic game (or in other words
the residue). We make this notion precise below:

Definition of init

– init(h) = {h} for h ∈ G
– init(g1; g2) = init(g1) if g1 6= ε else init(g2).
– init(g1 ∪ g2) = init(g1) ∪ init(g2).
– init(g1||g2) = init(g1) ∪ init(g2).

Definition of residue

– h\h = ε and ε\h = ε.

– (g1; g2)\h =
{

(g1\h); g2 if g1 6= ε.
(g2\h) otherwise.

– (g1 ∪ g2)\h =

 (g1\h) ∪ (g2\h) if h ∈ init(g1) and h ∈ init(g2).
g1\h if h ∈ init(g1) and h /∈ init(g2).
g2\h if h ∈ init(g2) and h /∈ init(g1).

– (g1||g2)\h =

 (g1\h||g2) ∪ (g1||g2\h) if h ∈ init(g1) and h ∈ init(g2).
(g1\h||g2) if h ∈ init(g1) and h /∈ init(g2).
(g1||g2\h) if h ∈ init(g2) and h /∈ init(g1).
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The translation used to express the property of enabling of trees in terms of
standard PDL formulas also suggest that the techniques developed for proving
completeness of PDL can be applied in the current setting. We base our axiom-
atization of the logic on the “reduction axioms” methodology of dynamic logic.
The most interesting reduction axiom in our setting would naturally involve the
parallel composition operator. Intuitively, for game expressions g1, g2, a formula
ϕ and a player i ∈ N the reduction axiom for 〈g1||g2, i〉ϕ need to express the
following properties:

– There exists an atomic tree h ∈ init(g1||g2) such that head(ν(h)) is enabled.
– Player i has a strategy in head(ν(h)) which when composed with a strategy

in the residue ensures ϕ. We use compi(h, g1, g2, ϕ) to denote this property
and formally define it inductively as follows:

Suppose h = (S,⇒, s0, λ̂) where A = moves(s0) = {a1, . . . , ak}.

– If h ∈ init(g1), h ∈ init(g2) and
• λ̂(s0) = i then compi(h, g1, g2, ϕ) =

∨
aj∈A(〈aj〉〈(haj

; (g1\h))||g2〉ϕ ∨
〈aj〉〈g1||(haj

; (g2\h))〉ϕ).
• λ̂(s0) ∈ ı then compi(h, g1, g2, ϕ) =

∧
aj∈A([aj ]〈(haj

; (g1\h))||g2〉ϕ ∨
[aj ]〈g1||(haj

; (g2\h))〉ϕ).
– If h ∈ init(g1), h 6∈ init(g2) and
• λ̂(s0) = i then compi(h, g1, g2, ϕ) =

∨
aj∈A(〈aj〉〈(haj ; (g1\h))||g2〉ϕ).

• λ̂(s0) ∈ ı then compi(h, g1, g2, ϕ) =
∧
aj∈A([aj ]〈(haj

; (g1\h))||g2〉ϕ).
– if h ∈ init(g2), h 6∈ init(g1) and
• λ̂(s0) = i then compi(h, g1, g2, ϕ) =

∨
aj∈A(〈aj〉〈g1||(haj

; (g2\h))〉ϕ).

• λ̂(s0) ∈ ı then compi(h, g1, g2, ϕ) =
∧
aj∈A([aj ]〈g1||(haj

; (g2\h))〉ϕ).

Note that the semantics for parallel composition allows us to interleave sub-
trees of g2 within g1 (and vice versa). Therefore in the definition of compi at each
stage after an action aj , it is important to perform the sequential composition
of the subtree haj

with the residue of the game expression.

The axiom schemes

(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.
(b) turni ≡

∧
j∈ı ¬turnj .

(A2) Axiom for single edge games:
(a) 〈a〉(ϕ1 ∨ ϕ2) ≡ 〈a〉ϕ1 ∨ 〈a〉ϕ2.
(b) 〈a〉turni ⊃ [a]turni.

(A3) Dynamic logic axioms:
(a) 〈g1 ∪ g2, i〉ϕ ≡ 〈g1, i〉ϕ ∨ 〈g2, i〉ϕ.
(b) 〈g1; g2, i〉ϕ ≡ 〈g1, i〉〈g2, i〉ϕ.
(c) 〈g1||g2, i〉ϕ ≡

∨
h∈init(g1||g2)

head
√

h ∧ compi(h, g1, g2, ϕ).
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(A4) 〈h, i〉ϕ ≡ h
√
∧ ↓(h,i,ϕ).

For h ∈ H with ν(h) = T = (S,⇒, s0, λ̂) we define ↓(h,i,ϕ) as follow:

– ↓(h,i,ϕ)=


ϕ if moves(s0) = ∅.∨
a∈Σ 〈a〉〈ha, i〉ϕ if moves(s0) 6= ∅ and λ̂(s0) = i.∧
a∈Σ [a]〈ha, i〉ϕ if moves(s0) 6= ∅ and λ̂(s0) ∈ ı.

Inference rules

(MP) ϕ, ϕ ⊃ ψ (NG) ϕ
ψ [a]ϕ

Axioms (A1) and (A2) are self explanatory. Axiom (A3) constitutes the re-
duction axioms for the compositional operators, and Axiom (A4) is the atomic
game axiom. Note that unlike in PDL sequential composition in our setting cor-
responds to composition over trees. The details of the completeness proof can
be found in [GRS10].
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5 Making strategies explicit

In this section, we discuss strategizing in large extensive form games (game
trees) by resource limited players. Such players rely on ‘local’ and ‘partial’ plans
which can be composed to form more ‘global’ plans. The notion of structures in
strategies become meaningful, leading to logical studies of structured strategies.

Dually, one could also consider the game tree as obtained by composition
from a collection of ‘small’ game trees constituting subgames and strategies as
‘complete’ plans on them to ensure local outcomes (which may be the initiation
of desired subgames).

In the following we discuss a logical language in which strategies are partial
plans, have compositional structure and we reason about agents employing such
strategies to achieve desired outcomes. We also consider functional (total) strate-
gies in finite subgames, and lift them over to strategies in structured games. For
more details on the results mentioned in this section see [Sim09,GRS11].

Before proceeding any further, we should mention here that the explicit study
of actions and strategies have been going on for a while in various logical frame-
works, and one can get acquainted with the different approaches in coalition
logics [Bor07], temporal logics [HJW05,WHW07], first and second order log-
ics [CHP07,Pin07]. A point of departure in all these frameworks from what we
are going to present below is that, these frameworks consider strategies at an
atomic level, giving different ‘names’ to different strategies or actions, whereas
we will concentrate on studying composite structure in strategies.

Preliminary notions Extensive form games are a natural model for represent-
ing finite games in an explicit manner. In this model, the game is represented as
a finite tree where the nodes of the tree corresponds to the game positions and
edges correspond to moves of players. The leaf nodes are labelled with payoffs
obtained by players. For formal definitions we refer to Section 4.4. For simplicity,
we will consider two person games only. The results can similarly be proved for
n person games.

5.1 Strategy specifications

Similar to what has been presented in Section 3.2, we conceive of strategy specifi-
cations as being built up from atomic ones using some grammar. The atomic case
specifies, for a player, what conditions she tests for before making a move. These
constitute positional strategies and the pre-condition for the move depends on
observables that hold at the current game position and some finite look-ahead
that each player can perform in terms of the structure of the game tree. In addi-
tion to the usage of past time formulas to represent the observables (cf. Section
3.2), another method is to state these pre-conditions as future time formulas of
a simple action indexed tense logic over the observables (to facilitate describ-
ing finite look-ahead). The structured strategy specifications are then built from
atomic ones using connectives.
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Below, for any countable set X, let BF (X) be sets of formulas given by the
following syntax:

BF (X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 〈a〉ψ

where a ∈ Σ.
Formulas in BF (X) are interpreted at game positions. The formula 〈a〉ψ

talks about one step in the future. It asserts the existence of an a edge after
which ψ holds. Note that future time assertions up to any bounded depth can
be coded by iteration of this construct. The “future free” fragment of BF (X)
are the Boolean formulas over X, we denote this fragment by Bool(X).

Syntax Let P i = {pi0, pi1, . . .} be a (non-empty) countable set of observables for
i ∈ N and P = ∪i∈NP i. The syntax of strategy specifications is given by:

Strat i(P i) := [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1.

where ψ ∈ BF (P i) and π ∈ Strat ı(P i ∩ P ı). The intuitive interpretations of
these constructs can be found in Section 3.2.

Semantics Let M = (T , V ) where T = (S,⇒, s0, λ̂) is an extensive form game
tree and V : S → 2P a valuation function. The truth of a formula ψ ∈ BF (P )
at the state s, denoted M, s |= ψ is defined as follows:

– M, s |= p iff p ∈ V (s).
– M, s |= ¬ψ iff M, s 6|= ψ.
– M, s |= ψ1 ∨ ψ2 iff M, s |= ψ1 or M, s |= ψ2.
– M, s |= 〈a〉ψ iff there exists an s′ such that s a⇒s′ and M, s′ |= ψ.

Here, strategy specifications are interpreted on strategy trees of T . We as-
sume the presence of two special propositions turn1 and turn2 that specifies
which player’s turn it is to move. We also assume the existence of a special
proposition leaf which holds at the terminal nodes. Formally, we assume that
the valuation function satisfies the property:

– for all i ∈ N , turni ∈ V (s) iff λ̂(s) = i.
– leaf ∈ V (s) iff moves(s) = ∅.

Recall that a strategy µ of player i can be viewed as a subtree Tµ =
(Sµ,⇒µ, s0, λ̂µ) of T . Let Vµ denote the restriction of the valuation function
V to Sµ and ρss0 : s0a0s1 · · · sm = s be the unique path in µ from the root node
s0 to s. For a strategy specification σ ∈ Strat i(P i), we define the notion of µ
conforming to σ (denoted (Tµ, Vµ) |= σ) as follows:

– (Tµ, Vµ) |= σ iff for every player i node s ∈ Sµ, we have ρss0 , s |= σ.

where we define (similar to the definition given in Section 3.2, with some nota-
tional modifications) ρss0 , sj |= σ for any player i node sj in ρss0 as,
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– ρss0 , sj |=i [ψ 7→ a]i iff (Tµ, Vµ), sj |= ψ implies outρs
s0

(sj) = a.
– ρss0 , sj |=i σ1 + σ2 iff ρss0 , sj |= σ1 or ρss0 , sj |= σ2.
– ρss0 , sj |=i σ1 · σ2 iff ρss0 , sj |= σ1 and ρss0 , sj |= σ2.
– ρss0 , sj |=i π ⇒ σ1 iff (if for all player ı nodes sk ∈ ρss0 such that k ≤ j,
ρss0 , sk |=ı π) then ρss0 , sj |=i σ1.

Above, ψ ∈ BF (P i) and for all i : 0 ≤ i < m, outρs
s0

(si) = ai and outµ(s) is the
unique outgoing edge in Tµ at s. Recall that s is a player i node and therefore
by definition there is a unique outgoing edge at s.

5.2 A strategy logic

We now discuss how we may embed structured strategies in a formal logic.
Formulas of the logic are built up using structured strategy specification. The
formulas describe the game arena in a standard modal logic, and in addition
specify the result of a player following a particular strategy at a game position,
to choose a specific move a. Using these formulas one can specify how a strategy
helps to eventually win (ensure) an outcome β.

Syntax The syntax of the logic is given by:

Ls := p ∈ P | (σ)i : c | ¬α | α1 ∨ α2 | 〈a〉α | 〈a〉α | 3-α | σ ;i β.

where a, c ∈ Σ, σ ∈ Strat i(P i), β ∈ Bool(P i). The derived connectives ∧ and
⊃ are defined as usual. Let 2-α = ¬3-¬α, 〈P 〉α =

∨
a∈Σ
〈a〉α, [a]α = ¬〈a〉¬α,

©α =
∨
a∈Σ 〈a〉α and

⊙
α = ¬©¬α.

Intuitively, the formula (σ)i : c asserts, at any game position, that the strat-
egy specification σ for player i allows the move c to be played at that position.
The formula σ ;i β says that from this position, choosing any move allowed
by the strategy specification σ for player i ensures the outcome β. These two
modalities constitute the main constructs of our logic.

Semantics Models of the logic are of the form M = (T , V ) where T =
(S,⇒, s0, λ̂) is an extensive form game tree and V : S → 2P is a valuation
function. As mentioned earlier, we require that the valuation function satisfies
the condition:

– For all s ∈ S and i ∈ N , turni ∈ V (s) iff λ̂(s) = i.

For the purpose of defining the logic it is convenient to define the notion
of the set of moves enabled by a strategy specification σ at a game position s
(denoted σ(s)). Given a model M = (T , V ) where T = (S,⇒, s0, λ̂), a node
s ∈ S and a strategy specification σ ∈ Strat i(P i) we define σ(s) as follows:
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– [ψ 7→ a]i(s) =

{a} if λ̂(s) = i, M, s |= ψ and a ∈ moves(s).
∅ if λ̂(s) = i, M, s |= ψ and a 6∈ moves(s).
Σ otherwise.

– (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).
– (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).

– (π ⇒ σ)(s) =
{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj).
Σ otherwise.

We say that a path ρs
′

s : s = s1
a1⇒s2 · · ·

am−1⇒ sm = s′ in T conforms to σ if
∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path constitutes a proper play, i.e. when
s = s0, we say that the play conforms to σ.

For a game tree T and a node s ∈ S, let Ts denote the tree which consists
of the unique path ρss0 and the subtree rooted at s. For a strategy specification
σ ∈ Strat i(P i), we define Ts |\ σ = (Sσ,⇒σ, s0, λ̂σ) to be the least subtree of Ts
which contains the unique path from s0 to s and satisfies the property: for every
s1 ∈ Sσ,

– if λ̂σ(s1) = i then for all s2 with s1
a⇒s2 and a ∈ σ(s1) we have s1

a⇒σs2 and
λ̂σ(s2) = λ̂(s2).

– if λ̂σ(s1) = ı then for all s2 with s1
a⇒s2 we have s1

a⇒σs2 and λ̂σ(s2) = λ̂(s2).

The truth of a formula α ∈ Ls in a model M and position s (denoted
M, s |= α) is defined by induction on the structure of α, as usual. Let ρss0
be s0

a0⇒s1 · · ·
am−1⇒ sm = s.

– M, s |= p iff p ∈ V (s).
– M, s |= ¬α iff M, s 6|= α.
– M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.
– M, s |= 〈a〉α iff there exists s′ such that s a⇒s′ and M, s′ |= α.
– M, s |= 〈a〉α iff m > 0, a = am−1 and M, sm−1 |= α.
– M, s |= 3-α iff there exists j : 0 ≤ j ≤ m such that M, sj |= α.
– M, s |= (σ)i : c iff c ∈ σ(s).
– M, s |= σ ;i β iff for all s′ such that s⇒∗σs′ in Ts |\ σ, we have M, s′ |=
β ∧ (turni ∧ ¬leaf ⊃ enabledσ).

where enabledσ =
∨
a∈Σ

(〈a〉> ∧ (σ)i : a) and ⇒∗σ denotes the reflexive, transitive

closure of ⇒σ.
Figure 5 illustrates the semantics of σ ;1 β. It says, for any 1 node β is

ensured by playing according to σ; for a 2 node, all actions should ensure β.
The notions of satisfiablility and validity can be defined in the standard way.

A formula α is satisfiable iff there exists a model M and s such that M, s |= α.
A formula α is said to be valid iff for all models M and for all nodes s, we have
M, s |= α.
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Fig. 5. Interpretation of σ ;i β

5.3 Axiom system

We now present an axiomatization of the valid formulas of the logic. We find the
following abbreviations useful:

– root = ¬〈P 〉> defines the root node to be one that has no predecessors.
– δσi (a) = turni∧ (σ)i : a denotes that move “a” is enabled by σ at an i node.
– invσi (a, β) = (turni ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fact that after an

“a” move by player i which conforms to σ, σ ;i β continues to hold.
– invσı (β) = turnı ⊃

⊙
(σ ;i β) says that after any move of ı, σ ;i β

continues to hold.
– conf π = 2- (〈a〉turnı ⊃ 〈a〉(π)ı : a) denotes that all opponent moves in the

past conform to π.

The axiom schemes

(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.
(b) turni ≡ ¬turnı.

(A2) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)
(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)

(A3) (a) 〈a〉α ⊃ [a]α
(b) 〈a〉α ⊃ [a]α
(c) 〈a〉> ⊃ ¬〈b〉> for all b 6= a

(A4) (a) α ⊃ [a]〈a〉α
(b) α ⊃ [a]〈a〉α

(A5) (a) 3- root
(b) 2-α ≡ (α ∧ [P ]2-α)

(A6) (a) 〈a〉> ⊃ ([ψ 7→ a]i)i : a for all a ∈ Σ
(b) (turni ∧ ψ ∧ ([ψ 7→ a]i)i : a) ⊃ 〈a〉>
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(c) turni ∧ ([ψ 7→ a]i)i : c ≡ ¬ψ for all a 6= c

(A7) (a) (σ1 + σ2)i : c ≡ (σ1)i : c ∨ (σ2)i : c
(b) (σ1 · σ2)i : c ≡ (σ1)i : c ∧ (σ2)i : c
(c) (π ⇒ σ)i : c ≡ conf π ⊃ (σ)i : c

(A8) σ ;i β ⊃ (β ∧ invσi (a, β) ∧ invσı (β) ∧ (¬leaf ⊃ enabledσ))

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

(Ind -past) α ⊃ [P ]α
α ⊃ 2-α

(Ind ;)
∧
a∈Σ(α ∧ δσi (a) ⊃ [a]α), α ∧ turnı ⊃

⊙
α, α ∧ ¬leaf ⊃ enabledσ, α ⊃ β

α ⊃ σ ;i β

Axioms (A1) give the propositional logic axioms with (b) corresponding to
the fact that only one player can move at a node. Axioms (A2) - (A4) provide
properties of the action operators. Axioms (A2) give the Kripke axiom for the
operators [a] and [a]. Axioms (A3) and (A4) give some consistency conditions
that are applied to the game tree model, e.g. (A3)(a) says that if one ‘a’ move
from a certain state, s (say) reaches a state where ‘p’ holds, then it holds at
all states reachable from s by the ‘a’ move. Axioms (A5) describe properties of
the past modality, whereas (A6) and (A7) describe the semantics of strategy
specifications. The rule Ind ; illustrates the new kind of reasoning in the logic.
It says that to infer that the formula σ ;i β holds in all reachable states, β
must hold at the asserted state and

– for a player i node after every move which conforms to σ, β continues to
hold.

– for a player ı node after every enabled move, β continues to hold.
– player i does not get stuck by playing σ.

For a proof of completeness of the above axiom system see [GRS11]. Given
a finite presentation of the model M and a formula α it is possible to construct
a Büchi tree automaton which accepts M iff M |= α (details can be found in
[Sim09], pages 54-62). Thus the truth checking (or the model checking) question
of the logic remains decidable.

5.4 Compositional games

In order to express complex strategizing notions, it is also useful to compose
game-strategy pairs rather than to treat game composition and strategic analysis
as independent entities (see [GRS11] for a detailed discussion). In this section
we formalize this notion of composition. In fact we work with a more general
framework of game-outcome pairs. A game-outcome pair in effect defines the
functional strategies which ensure the specified outcome.
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Syntax for extensive form game trees Let Nodes be a countable set. The
syntax for specifying finite extensive form game trees is given by:

G(Nodes) := (i, x) | Σam∈J((i, x), am, tam
)

where i ∈ N , x ∈ Nodes, J ⊆ Σ, and tam
∈ G(Nodes).

Given h ∈ G(Nodes) we define the tree Th generated by h inductively as
follows.

– h = (i, x): Th = (Sh,⇒h, λ̂h, sx) where Sh = {sx}, λ̂h(sx) = i.
– h = ((i, x), a1, ta1)+ · · ·+((i, x), ak, tak

): Inductively we have trees T1, . . .Tk
where for j : 1 ≤ j ≤ k, Tj = (Sj ,⇒j , λ̂j , sj,0). Define Th = (Sh,⇒h, λ̂h, sx)
where
• Sh = {sx} ∪ ST1 ∪ . . . ∪ STk

.
• λ̂h(sx) = i and for all j, for all s ∈ STj

, λ̂h(s) = λ̂j(s).
• ⇒h =

⋃
j:1≤j≤k({(sx, aj , sj,0)} ∪⇒j).
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Fig. 6. Extensive form game tree

As an example, consider the extensive form game tree shown in Figure 6.
The nodes are labelled with turns of players and edges with the actions. The
syntactic representation of this tree can be given as follows:

– h = ((1, x0), a, t1) + ((1, x0), b, t2) where
• t1 = ((2, x1), c1, (2, y1)) + ((2, x1), d1, (2, y2)) and
• t2 = ((2, x2), c2, (2, y3)) + ((2, x2), d2, (2, y4)).

Syntax for game-strategy logic Let P be a countable set of propositions,
the syntax of the logic is given by:

Γ := (h, β) | g1; g2 | g1 ∪ g2 | g∗

Lc := p ∈ P | ¬α | α1 ∨ α2 | 〈g, i〉α

where h ∈ G(Nodes), β ∈ Bool(P ) and g ∈ Γ .
Intuitively, the connective 〈g, i〉α asserts at state w that α holds at the leaves

of a strategy tree g for player i enabled at w.
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Semantics Models of the logic are pairs M = (T , V ) where T = (S,⇒, s0, λ̂) is
an extensive form game tree and V : S → 2P is a valuation function. To formally
define the truth of a formula in a model we need to first formalise the notion of
when a game is enabled at a state of the model, similar to what we have done
in Section 4.4.

Enabling of trees. For w ∈ S, let Tw denote the subtree of M starting at w.
We say the game g is enabled at a state w if the structure g can be embedded
in Tw with respect to the enabled actions and player labelling. Since M needs
not be deterministic, there could be multiple embeddings, and therefore we work
with the maximal embedding (denoted Tw |\ g) and this is the game tree under
consideration. Formally this can be defined as follows:

Given a state w and g ∈ G(Nodes), let Tw = (SwM ,⇒M , sw, λ̂M ) and Tg =
(Sg,⇒g, sg,0, λ̂g). The restriction of Tw with respect to the game g (denoted
Tw |\ g) is the subtree of Tw which is generated by the structure specified by Tg.
The restriction is defined inductively as follows: Tw |\ g = (S,⇒, s0, λ̂, f) where
f : S → Sg. Initially S = {sw}, λ̂(sw) = λ̂M (sw), s0 = sw and f(sw) = sg,0.

For any s ∈ S, let f(s) = t ∈ Sg. Let {a1, . . . , ak} be the outgoing edges of
t, i.e. for all j : 1 ≤ j ≤ k, t

aj⇒gtj . For each aj , let {s1j , . . . , smj } be the nodes in

SwM such that s
aj⇒Ms

l
j for all l : 1 ≤ l ≤ m. Add nodes s1j , . . . , s

m
j to S and the

edges s
aj⇒slj for all l : 1 ≤ l ≤ m. Also set λ̂(slj) = λ̂M (slj) and f(slj) = tj .

We say that a game h is enabled at w (denoted enabled(h,w)) if the tree
Tw |\ g = (S,⇒, s0, λ̂, f) satisfies the following property: for all s ∈ S,

–
→
s=

−→
f(s),

– if
→
s 6= ∅ then λ̂(s) = λ̂g(f(s)).

Having defined the notion of an atomic tree being enabled at a state, the next
step is to “interpret” compositional games. Intuitively with each compositional
game g ∈ Γ and player i ∈ N we associate the collection of states that player
can ensure by employing a strategy in g. Formally we define sets Rig ⊆W × 2W

by induction on the structure of g. For a game tree T , let Ωi(T ) denote the set
of strategies of player i on the game tree T and frontier(T ) denote the set of all
leaf nodes of T .

Atomic pair For an atomic pair g = (h, β) and i ∈ N , we define Rig as follows:

– Ri(h,β) = {(u,X) | enabled(h, u) and ∃µ ∈ Ωi(Tu |\h) such that frontier(µ) =
X and ∀s ∈ X, M, s |= β}.

where for a Boolean formula β, we have the standard interpretation for M, s |= β.

Composition Sequential composition and choice is interpreted as follows:

– Rig1;g2 = {(u,X) | ∃Y ⊆ W such that (u, Y ) ∈ Rig1 and ∀v ∈ Y there exists
Xv ⊆ X such that (v,Xv) ∈ Rig2 and

⋃
v∈Y Xv = X}.
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– Rig1∪g2 = Rig1 ∪R
i
g2 .

Iteration The semantics of Kleene star is defined with respect to a least fixed-
point operator. We formalize this as follows: let · be a binary operator over
W × 2W which is defined as,

– R1·R2 = {(u,X) | ∃w1, Y1, . . . , wk, Yk with (u, {w1, . . . , wk}) ∈ R1,∀j, (wj , Yj)
∈ R2 and X =

⋃
j Yj}.

for all R1, R2 ⊆W × 2W .
Given a Z ⊆ W × 2W , let FZ be the operator over the domain W × 2W

defined as FZ(R) = R>∪Z ·R where R> = {(u, {u}) | u ∈W}. Observe that the
operator · is monotonic in the following sense: if R1 ⊆ R2 then R0 ·R1 ⊆ R0 ·R2.
This also implies that FZ is monotonic for every Z ⊆ W × 2W . Thus by the
Knaster-Tarski theorem we have that for every Z, the least fixed-point (LFP) of
FZ exists. LFP(FZ) can be computed as the limit of the following sequence of
partial solutions: R0 = R>, Rj+1 = FZ(Rj)(= R> ∪ Z · Ri) and Rλ = ∪ν<λRν
for a limit ordinal λ.

– Rig∗ = LFP(FRi
g
).

Truth The truth of a formula α ∈ Lc in a model M and a position s (denoted
M, s |= α) is defined as follows:

– M, s |= p iff p ∈ V (s).
– M, s |= ¬α iff M, s 6|= α.
– M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.
– M, s |= 〈g, i〉α iff ∃(s,X) ∈ Rig such that ∀s′ ∈ X we have M, s′ |= α.

A formula α is satisfiable if there exists a model M and a state s such that
M, s |= α.

5.5 Axiom system

We present an axiomatization of the valid formulas of the logic. Let hia =
((i, x), a, (j, y)) and hıa = ((ı, x), a, (j, y)). We can then define 〈a〉α with the
standard modal logic interpretation as follows:

– 〈a〉α = (turni ⊃ 〈(hia,>), i〉α) ∧ (turnı ⊃ 〈(hıa,>), ı〉α).

For h ∈ G(Nodes), we use the notation h
√

to denote that the tree structure
h is enabled. This is defined as follows:

– If h = (i, x) then h
√

= >.
– If h = ((i, x), a1, ta1) + . . .+ ((i, x), ak, tak

) then
• h

√
= turni ∧ (

∧
aj∈moves(s0)

(〈aj〉> ∧ [aj ]t
√

aj
)).

The axiom schemes
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(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.
(b) turni ≡ ¬turnı.

(A2) Axiom for single edge games:
(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.
(b) 〈a〉turni ⊃ [a]turni.

(A3) Dynamic logic axioms:
(a) 〈g1 ∪ g2, i〉α ≡ 〈g1, i〉α ∨ 〈g2, i〉α.
(b) 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α.
(c) 〈g∗, i〉α ≡ α ∨ 〈g, i〉〈g∗, i〉α.

(A4) 〈(h, β), i〉α ≡ h
√
∧ ↓(h,i,β,α).

where we define ↓(h,i,β,α) as follow:

– if h = (j, x) for j ∈ N then ↓(h,i,β,α)= β ∧ α.
– if h = ((j, x), a1, ta1) + . . .+ ((j, x), ak, tak

) with A = {a1, . . . , ak} then

• ↓(h,i,β,α)=
{∨

a∈A 〈a〉〈(ta, β), i〉α if j = i.∧
a∈A [a]〈(ta, β), i〉α if j = ı.

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

(IND) 〈g, i〉α ⊃ α
〈g∗, i〉α ⊃ α

For a proof of completeness of this axiom system as well as decidability of the
logic, see [GRS11].
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6 Dynamics of large games

We have merely touched on logical and finite memory structure in strategies in
games. Hopefully, all the preceding discussion convinces the reader that grant-
ing first class citizenship to strategies is worthwhile and feasible. The question
remains whether such an approach yields new and interesting insights. Below
we mention some directions in which such a study might proceed, offering only
a graphic outline of ideas and trends; a fully formulated theory awaits devel-
opment. The main strand running through the discussion is that we consider
temporally large games (that have episodic structure) and spatially large games
(where the number of players is too large for rationality to be based on exhaustive
intersubjectivity).

6.1 Strategy switching and stability

We have argued that resource limited players do not select complete strategies.
Rather, they start initially with a set of possible strategies, knowledge about the
game and other players’ skills. As the game progresses, they compose/switch to
devise new strategies. This can be specified in a syntax for strategy specification
that crucially uses a construct for players to play the game with a strategy ν1
up to some point and then switch to a strategy ν2.

Ωi ::= ν ∈ Σi | Strat1∪Strat2 | Strat1∩Strat2 | Strat1
aStrat2 | (Strat1+Strat2) |

ψ?Strat

Using the “test operator” ψ?Strat , a player checks whether an observable
condition ψ holds and then decides on a strategy. We think of these conditions
as past time formulas of a simple tense logic over an atomic set of observables.

In the atomic case, ν simply denotes a partial strategy. The intuitive meaning
of the operators are given as:

– Strat1 ∪ Strat2 means that the player plays according to the strategy Strat1

or the strategy Strat2.
– Strat1 ∩ Strat2 means that if at a history t ∈ T , Strat1 is defined then the

player plays according to Strat1; else if Strat2 is defined at t then the player
plays according to Strat2. If both Strat1 and Strat2 are defined at t then the
moves that Strat1 and Strat2 specify at t must be the same (we call such a
pair Strat1 and Strat2, compatible).

– Strat1
aStrat2 means that the player plays according to the strategy Strat1

and then after some history, switches to playing according to Strat2. The
position at which she makes the switch is not fixed in advance.

– (Strat1 + Strat2) says that at every point, the player can choose to follow
either Strat1 or Strat2.

– ψ?Strat says at every history, the player tests if the property ψ holds of that
history. If it does then she plays according to Strat .
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The following lemma relates strategy specifications to finite state transducers,
which are automata that output advice.

Lemma 6.1. Given game arena G, a player i ∈ N and a strategy specifica-
tion Strat ∈ Ωi, where all the atomic strategies mentioned in Strat are bounded
memory, we can construct a transducer AStrat such that for all µ ∈ Ωi we have
G, µ |= Strat iff µ ∈ Lang(AStrat).

Call a strategy Strat switch-free if it does not have any of the a or the +
constructs.

Given a game arena G and strategy specifications of the players, we may ask
whether there exists some subarena of G that the game settles down to if the
players play according to their strategy specifications. This subarena is in some
sense the equilibrium states of the game. It is also meaningful to ask if the game
settles down to such an equilibrium subarena, then whether the strategy of a
particular player attains stability with respect to switching.

Theorem 6.1. Given a game arena G = (W,→, w0) a subarena R of G and
strategy specifications Strat1, . . . ,Stratn for players 1 to n, the following ques-
tions are decidable.

– Do all plays conforming to these specifications eventually settle down to R?
– Given strategy specifications Strat1, . . . ,Stratn for players 1 to n, if all plays

conforming to these specifications converge to R, does the strategy of player
i become eventually stable with respect to switching?

For a detailed study of strategy switching, see [PRS09b].

6.2 Issues in games with a large number of players

Game models of social situations typically involve large populations of players.
However, common knowledge of rationality symmetrizes player behaviour and
allows us to predict behaviour of any rational player. On the other hand, it is
virtually impossible for each player to reason about the behaviour of every other
player in such games, since a player may not even know how many players are
in the game, let alone how they are likely to play.

What is the technical implication of number of players being large? In our
view, in large games, the payoffs are usually dependent on the ‘distribution’
of the actions played by the players rather than the action profiles themselves.
Moreover, in such games the payoffs are independent of the identities of the
players.

An action distribution is a tuple y = (y1, y2, . . . , y|A|) such that yi ≥ 0, ∀i
and

∑|A|
i=1 yi ≤ n. Let Y be the set of all action distributions. Given an action

profile a, we let y(a) be its corresponding action distribution, that is, y(a)(k)
gives the number of players playing the kth action in A. Every player i has a
rational valued function fi : Y → Q which can be seen as the payoff of i for a
particular distribution.
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Why are such distributions interesting? They are used in many social situ-
ations. For instance, recently Singapore decided to make the entire city Wi-Fi
enabled. How is it decided that a facility be provided as infrastructure? Typi-
cally such analysis involves determining when usage crosses a threshold. But then
understanding why usage of one facility increases vastly, rather than another,
despite the presence of several alternatives, is tricky. But this is what strategy se-
lection is about. However, we are not as much bothered about strategy selection
by an individual player but by a significant fraction of the population.

Similar situations occur in the management of the Internet. Policies for band-
width allocation are not static. They are dynamic, based on studying both vol-
umes of traffic and type of traffic. The popularity of an application like YouTube
dramatically changes such usage, calling for changes in Internet policies. Predict-
ing such future requirements is tricky, but much wanted by the engineers. Herd
mentality and imitation are common in such situations.

In large games, payoffs are associated not with strategy profiles, but with
type distributions. Suppose there are k strategies used in the population. Then
the outcome is specified as a map µ : Πk(n)→ P k. Typically there is usually a
small number t of types such that t < n where n is the number of players. Can
one carry out all the analysis using only the t types and then lift the results to
the entire game?

Why should such an analysis be possible? When we confine our attention
to finite memory players, for n players, the strategy space is the n-fold product
of these memory states. What we wish to do is to map this space into a t-fold
product, whereby we wish to identify two players of the same type. We can show
that in the case of deterministic transducers, such a blow-up is avoidable, since
the product of a type with itself is then isomorphic to the type.

A population of 1000 players with only two types needs to be represented
only by pairs of states and not 1000-tuples. But we need to determinize trans-
ducers, and that leads to exponential blow-up. So one might ask, when is the
determinising procedure worthwhile? Suppose we have n players, t types, and p
is the maximum size of the state space of any nondeterministic type finite state
transducer. It turns out ([PR11a]) that the construction is worthwhile when
n > 0.693 · t · π(p), where π(p) is the number of primes below p. As we are
talking about large games, the inequality above can be expected to hold.

In general, while we have spoken only of qualitative outcomes, and this is
natural for a logical study, it makes sense to consider quantitative objectives
as well, especially when outcomes are distribution determined. For infinite play,
such outcomes may diverge, and we then need to consider limit-average payoffs
(or other discounted payoffs). It is still possible to carry out the kind of analy-
sis as we have discussed here, to show existence of equilibria in finite memory
strategies, as for instance, in [PR11a].

Neighbourhood structures In large games, it is convenient to think of play-
ers arranged in neighbourhoods. A player strategizes locally, observing behaviour
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and outcomes within her neighbourhood, but may switch to an adjacent neigh-
bourhood.

As an example, consider vegetable sellers in India. In Indian towns, it is still
possible to see vegetable sellers who carry vegetables in baskets or pushcarts
and set up shop in some neighbourhood. The location of their ‘shop’ changes
dynamically, based on the seller’s perception of demand for vegetables in different
neighbourhoods in the town, but also on who else is setting up shop near her,
and on her perception of how well these (or other) sellers are doing. Indeed, when
she buys a lot of vegetables in the wholesale market, the choice of her ‘product
mix’ as well as her choice of location are determined by a complex rationale.
While the prices she quotes do vary depending on general market situation, the
neighbourhoods where she sells also influence the prices significantly: she knows
that in the poorer neighbourhoods, her buyers cannot afford to pay much. She
can be thought of as a small player in a large game, one who is affected to some
extent by play in the entire game, but whose strategising is local where such
locality is itself dynamic.

In the same town, there are other, relatively better off vegetable sellers who
have fixed shops. Their prices and product range are determined largely by
wholesale market situation, and relatively unaffected by the presence of the
itinerant vegetable sellers. If at all, they see themselves in competition only
against other fixed-shop sellers. They can be seen as big players in a large game.

What is interesting in this scenario is the movement of a large number of
itinerant vegetable sellers across the town, and the resultant increase and de-
crease in availability of specific vegetables as well as their prices. We can see
the vegetable market as composed of dynamic neighbourhoods that expand and
contract, and the dynamics of such a structure dictates, and is in turn dictated
by the strategies of itinerant players.

When we model games with such neighbourhood structures, the central ques-
tion to study is that of stability of game configurations. When can we guarantee
that game dynamics leads to a configuration that does not change from then on,
or oscillated between fixed configurations? Do finite memory strategies suffice?
What kind of game theoretic tools are used for such analysis? [PR11b] offers
an instance, where a characterization is presented in terms of potential games
[MS96]. However, the general question of what stable configurations are of in-
terest and how to strategize to achieve them is of general interest, as well as
obtaining bounds on when stability is attained.

Dynamic game forms Social situations often involve strategies that are generic,
(almost) game-independent: threat and punishment; go with the winner / follow
the leader; try to take the lead, and if you can’t, follow a leader; imitate someone
you think well of; and so on. They have some (limited) efficacy in many interac-
tion situations. But when a significant proportion of players use such heuristics,
it may affect game dynamics significantly.

In general, we can consider such dynamics as follows. An individual player
has to make choices; making choices has a cost. Society provides choices, incurs
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cost to do so. Society revises choices and costs from time to time based on the
history and prediction of the future. This effects individual strategies who switch
between the available choices. Then the game arena is not static but changes
dynamically.

We can then ask several questions based on eventual patterns dictated by
the dynamics:

– Does the play finally settle down to some subset of the game?
– Can a player ensure certain objectives using a strategy that doesn’t involve

switching?
– Given a subarena, is a particular strategy live?
– Does an action profile eventually become part of the social infrastructure?
– Do the rules of the society and the behaviour of other players drive a par-

ticular player out of the game?

[PRS09a] offers a formal model in which such questions are posed and it
is shown that these can be checked algorithmically. Therefore, it is possible to
compare between game restriction rules in terms of their imposed social cost.
For a player, if the game restriction rules are known and the type of the other
players are known then she can compare between her strategy specifications.

The more general objective of such study is to explore the rationale of when
and how should society intervene, and when such rationale is common knowledge
among players, how they should strategize. In this sense, individual rationality
and societal rationality are mutually recursive in each other, and the study of
such interdependence offers an interesting challenge for logical models.

The imitation heuristic In a large population of players, where resources and
computational abilities are asymmetrically distributed, it is natural to consider
a population where the players are predominantly of two kinds: optimisers and
imitators. Asymmetry in resources and abilities can then lead to different types of
imitation and thus ensure that we do not end up with “herd behaviour”. Mutual
reasoning and strategising process between optimizers and imitators leads to
interesting questions for game dynamics in these contexts.

Is imitation justified? We can say no since it does not achieve optimal in
most cases. But we can also say yes, since it saves time, uses less resource and
does not do much worse than optimal outcomes in most cases.

The rationality (or otherwise) of imitation has been studied (though perhaps
not extensively) in game theory. In [PR10], games of unbounded duration on
finite graphs are studied, where players may have overlapping objectives, and
are divided into players who optimise and others who imitate. In this setting, it
is shown that the following questions can be answered algorithmically:

– If the optimisers and the imitators play according to certain specifications,
is a global outcome eventually attained?

– What sort of imitative behaviour (subtypes) eventually survive in the game?
– How worse-off are the imitators from an equilibrium outcome?
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However, this is a preliminary study, and more sophisticated models would
involve randomizing players as well as more nuanced player types in the popu-
lation.

6.3 A research agenda

An important area that we have not touched on at all is that of games of im-
perfect information. This is especially important since communication structure
in strategies is important and worthwhile for study. What to communicate and
when it is strategic and when players have only a partial view of the game state
and must communicate to learn more as well as coordinate to achieve desired
goals, this dictates considerable structure in strategies. For an instance of such
reasoning, see [RS10].

Below we list several questions that come up in the course of a search for
strategy structure.

– We have discussed games with a fixed number of players (albeit unknown
perhaps). How is strategizing affected when the set of players is unbounded,
and hence potentially infinite? This is the case in games such as the Internet.

– We discussed neighbourhood structures, but in the model, we have merely
replaced a flat structure on players by one which has one level depth. It is
natural to consider a hierarchical structure of neighbourhoods, and a topo-
logical study would be more useful.

– We have talked only of player behaviour in games. A closely related question
is one that keeps the strategy space fixed, but asks for incentive mechanisms
that achieve desired outcomes. Mechanism design in the context of structured
strategies is unclear.

– We have suggested that heuristics such as imitation are important in large
games. It would be interesting to offer such analysis for a study of herd
behaviour and runaway phenomena.

– At a foundational level, what we seek is an algebraic theory of strategies.
What operators should be considered and how they interact requires a deeper
mathematical study.

– We talked of game - strategy pairs, to show that they are dependent notions.
A theory in which games and strategies are mutually recursive in the other
is needed for offering foundations to such reasoning.

– Finite state transducers provide a natural complexity measure for strategies:
the size of the minimal deterministic finite state machine that can play that
strategy. Developing a nuanced complexity theory of strategies based on such
notions is a definite need. This requires notions of strategy reductions that
await further exploration.

– A most critical lacuna in our discussion has been the omission of randomized
strategies. Logical theories that admit strategy structure as well as random-
ization are essential for applicability.

To conclude, singing praise of strategies is not only interesting in itself, but
can also offer new questions for study to both game theorists and logicians.
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