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Chapter 1

Introduction

1.1 What is Game Theory?

We, humans, cannot survive without interacting with othemhns, and ironically, it some-
times seems that we have survived despite those interactiBroduction and exchange require
cooperation between individuals at some level but the sateedictions may also lead to disastrous
confrontations. Human history is as much a history of fighid wars as it is a history of success-
ful cooperation. Many human interactions carry the possf cooperation and harmony as well
as conflict and disaster. Examples are abound: relatiomgnmng couples, siblings, countries,
management and labor unions, neighbors, students andgpoo$e and so on.

One can argue that the increasingly complex technologissttitions, and cultural norms that
have existed in human societies have been there in ordegilitefi'2 and regulate these interactions.
For example, internet technology greatly facilitates ltgadler transactions, but also complicates
them further by increasing opportunities for cheating amadd. Workers and managers have usu-
ally opposing interests when it comes to wages and workinglitions, and labor unions as well as
labor law provide channels and rules through which any fiateconflict between them can be ad-
dressed. Similarly, several cultural and religious norsagh as altruism or reciprocity, bring some
order to potentially dangerous interactions between iddals. All these norms and institutions
constantly evolve as the nature of the underlying intevastikeep changing. In this sense, under-
standing human behavior in its social and institutionalterirequires a proper understanding of
human interaction.

Economics, sociology, psychology, and political science @l devoted to studying human
behavior in different realms of social life. However, in ganstances they treat individuals in
isolation, for convenience if not for anything else. In atirds, they assume that to understand

5



Game theory studies strategic
interactions

rules of the game
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one individual's behavior it is safe to assume that her behaoes not have a significant effect on
other individuals. In some cases, and depending upon tre&tigaene is asking, this assumption
may be warranted. For example, what a small farmer in a loeakat, say in Montana, charges for
wheat is not likely to have an effect on the world wheat pricgsnilarly, the probability that my
vote will change the outcome of the U.S. presidential edectiis negligibly small. So, if we are
interested in the world wheat price or the result of the piedial elections, we may safely assume
that one individual acts as if her behavior will not affeat hutcome.

In many cases, however, this assumption may lead to wrongusians. For example, how
much our farmer in Montana charges, compared to the otherefarin Montana, certainly affects
how much she and other farmers make. If our farmer sets a firates lower than the prices
set by the other farmers in the local market, she would setentitan the others, and vice versa.
Therefore, if we assume that they determine their pricebawit taking this effect into account,
we are not likely to get anywhere near understanding thdiaer. Similarly, the vote of one
individual may radically change the outcome of voting in $ro@mmittees and assuming that they
vote in ignorance of that fact is likely to be misleading.

The subject matter of game theory is exactly those intemastivithin a group of individuals (or
governments, firms, etc.) where the actions of each indaliltave an effect on the outcome that
is of interest to all. Yet, this is not enough for a situatiorbe a proper subject of game theory: the
way that individuals act has to be strategic, i.e., they khba aware of the fact that their actions
affect others. The fact that my actions have an effect on tiheome does not necessitate strategic
behavior, if | am not aware of that fact. Therefore, we say tfane theory studiestrategic
interactionwithin a group of individuals. By strategic interaction weam that individuals know
that their actions will have an effect on the outcome and exbringly.

Having determined the types of situations that game theeajsdvith, we have to now discuss
how it analyzes these situations. Like any other theoryptijective of game theory is to organize
our knowledge and increase our understanding of the outsiatiel. A scientific theory tries to
abstract the most essential aspects of a given situatialyzmthem using certain assumptions and
procedures, and at the end derive some general principtepradictions that can be applied to
individual instances.

For it to have any predictive power, game theory has to pastsome rules according to which
individuals act. If we do not describe how individuals behawhat their objectives are and how
they try to achieve those objectives we cannot derive angigtiens at all in a given situation. For
example, one would get completely different predictiongarding the price of wheat in a local
market if one assumes that farmers simply flip a coin and ah@esween $1 and $2 a pound
compared to if one assumes they try to make as much money siblpo§ herefore, to bring some
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discipline to the analysis one has to introduce some streigtuterms of the rules of the game.
The most important, and maybe one of the most controvessaymption of game theory
which brings about this discipline is that individuals aaé&onal.

We assume that individuals are
rational.

Definition. An individual isrational if she has well-defined objectives (or preferences)
over the set of possible outcomes and she implements the\zlstble strategy to pursue
them.

Rationality implies that individuals know the strategiesitable to each individual, have com-
plete and consistent preferences over possible outcomégshay are aware of those preferences.
Furthermore, they can determine the best strategy for thleasand flawlessly implement it.

£ |f taken literally, the assumption of rationality is certli an unrealistic one, and if
applied to particular cases it may produce results thattavdds with reality. We should
first note that game theorists are aware of the limitationgoised by this assumption
and there is an active research area studying the implicatd less demanding forms
of rationality, calledbounded rationality This course, however, is not the appropriete
place to study this area of research. Furthermore, to rapltyeciate the problems with
rationality assumption one has to first see its results. &beg, without delving into
too much discussion, we will argue that one should treapmatity as a limiting case.
You will have enough opportunity in this book to decide fouyself whether it produces
useful and interesting results. As the saying goes: “thefpobthe pudding is in the
eating.”

The term strategic interaction is actually more loaded tihas alluded to above. It is not
enough that | know that my actions, as well as yours, affecbtitcome, but | must also know that
you know this fact. Take the example of two wheat farmers.pBap both farmer A and B know
that their respective choices of prices will affect theioffis for the day. But suppose, A does not
know that B knows this. Now, from the perspective of farmeirfakmer B is completely ignorant
of what is going on in the market and hence farmer B might sgtpmite. This makes farmer
A's decision quite uninteresting itself. To model the sitoia more realistically, we then have to
assume that they both know that they know that their pricdisaffiect their profits. One actually
has to continue in this fashion and assume that the rulesafame, including how actions affect
the participants and individuals’ rationality, are comnkmowledge.

A fact X is common knowledgi everybody knows it, if everybody knows that everybody
knows it, if everybody knows that everybody knows that eldedy knows it, an so on. This has
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some philosophical implications and is subject to a lot aftoaversy, but for the most part we will
avoid those discussions and take it as given.

We assume that the game and
rationality are common
knowledge

In sum, we may define game theory as follows:

Definition. Game theoryis a systematic study of strategic interactions amongmatio
individuals.

Its limitations aside, game theory has been fruitfully &xgbto many situations in the realm of
economics, political science, biology, law, etc. In the oéghis chapter we will illustrate the main
ideas and concepts of game theory and some of its applisatisimg simple examples. In later
chapters we will analyze more realistic and complicatediades and discuss how game theory is
applied in the real world. Among those applications are fiampetition in oligopolistic markets,
competition between political parties, auctions, bargginand repeated interaction between firms.

1.2 Examples

For the sake of comparison, we first start with an example iichivthere is no strategic inter-
action, and hence one does not need game theory to analyze.

Example 1.1(A Single Person Decision Problem$uppose Ali is an investor who can invest his
$100 either in a safe asset, say government bonds, whichsbtid®o return in one year, or he can
invest it in a risky asset, say a stock issued by a corporatiiich either brings 20% return (if the
company performance is good) or zero return (if the compamnfopnance is bad).

State
Good Bad

Bonds 10% 10%
Stocks 20% 0%

Clearly, which investment is best for Ali depends on his @refices and the relative likelihoods
of the two states of the world. Let’s denote the probabilitthe good state occurring and that of
the bad state & p, and assume that Ali wants to maximize the amount of moneyakeahthe end
of the year. If he invests his $100 on bonds, he will have $1ieend of the year irrespective
of the state of the world (i.e., with certainty). If he inestn stocks, however, with probability
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p he will have $120 and with probability -1 p he will have $100. We can therefore calculate his
average (or expected) money holdings at the end of the year as

px 120+ (1— p) x 100= 100+ 20x p

If, for example,p=1/2, then he expects to have $110 at the end of the year. In deifigra- 1/2,
then he would prefer to invest in stocks, angi& 1/2 he would prefer bonds.

This is just one example of single person decision making problem which the decision
problem of an individual can be analyzed in isolation of thieeo individuals’ behavior. Any

uncertainty involved in such problems are exogenous in émsesthat it is not determined or ir%é%ﬁzfsz :‘i:‘i;z
fluenced in any way by the behavior of the individual in guastiln the above example, the only

uncertainty comes from the performance of the stock, whiehmay safely assume to be inde-

pendent of Ali's choice of investment. Contrast this witlk gituation illustrated in the following

example.

Example 1.2(An Investment Game) Now, suppose Ali again has two options for investing his
$100. He may either invest it in bonds, which have a certaiumrmeof 10%, or he may invest it in
a risky venture. This venture requires $200 to be a sucaesshich case the return is 20%, i.e.,
$100 investment yields $120 at the end of the year. If totastment is less than $200, then the
venture is a failure and yields zero return, i.e., $100 imest yields $100. Ali knows that there
is another person, let’s call her Beril, who is exactly in #ane situation, and there is no other
potential investor in the venture. Unfortunately, Ali andrBB don’'t know each other and cannot
communicate. Therefore, they both have to make the investofecision without knowing the
decisions of each other.

We can summarize the returns on the investments of Ali and &ea function of their deci-
sions in the table given in Figure 1.1. The first number in ezathrepresents the return on Ali's
investment, whereas the second number represents Betillenr We assume that both Ali and
Beril know the situation represented in this table, i.eeythnow the rules of the game.

Figure 1.1: Investment Game.

Beril
Bonds Venture
Bonds | 110,110 | 110100
Venture | 100110 | 120,120

The existence of strategic interaction is apparent in tiigton, which should be contrasted
with the one in Example 1.1. The crucial element is that thie@ue of Ali's decision (i.e., the
return on the investment chosen) depends on what Beril dioessting in the risky option, i.e., the
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venture, has an uncertain return, as it was the case in Eralrihl However, now the source of the
uncertainty is another individual, namely Beril. If Ali ieves that Beril is going to invest in the
venture, then his optimal choice is the venture as well, edrif he thinks Beril is going to invest
in bonds, his optimal choice is to invest in bonds. FurtheemBeril is in a similar situation, and

this fact makes the problem significantly different from tree in Example 1.1.

So, what should Ali do? What do you expect would happen in ghisation? At this point
we do not have enough information in our model to provide aswen. First we have to describe
Ali and Beril's objectives, i.e., their preferences oves et of possible outcomes. One possibility,
economists’ favorite, is to assume that they are both egdegayoff, or utility, maximizers. If
we further take utility to be the amount of money they haventiwe may assume that they are
expected money maximizers. This, however, is not enoughdao answer Ali's question, for we
have to give Ali a way to form expectations regarding Bebkhavior.

One simple possibility is to assume that Ali thinks Beril gy to choose bonds with some
given probabilityp between zero and one. Then, his decision problem becomaticialeo the one
in Example 1.1. Under this assumption, we do not need ganoeythe solve his problem. But,
is it reasonable for him to assume that Beril is going to dedidsuch a mechanical way? After
all, we have just assumed that Beril is an expected moneymizai as well. So, let's assume that
they are both rational, i.e., they choose whatever actiahrttaximizes their expected returns, and
they both know that the other is rational.

Is this enough? Well, Ali knows that Beril is rational, butsts still not enough for him to
deduce what she will do. He knows that she will do what maxémiaer expected return, which,
in turn, depends on what she thinks Ali is going to do. Tharfahat Ali should do depends on
what she thinks Beril thinks that he is going to do. So, we havgo one more step and assume
that not only each knows that the other is rational but alsth éaows that the other knows that
the other is rational. We can continue in this manner to atbatan intelligent solution to Ali’s
connundrum is to assume that both know that both are ratiboti know that both know that both
are rational; both know that both know that both know thattere rational; ad infinitum. This
is a difficult problem indeed and game theory deals exactti this kind of problems. The next
example provides a problem that is relatively easier toesolv

Example 1.3(Prisoners’ Dilemma) Probably the best known example, which has also become
a parable for many other situations, is called the Prisomdtsmma. The story goes as follows:
two suspects are arrested and put into different cells bafa@ trial. The district attorney, who is
pretty sure that both of the suspects are guilty but lacksigimevidence, offers them the following
deal: if both of them confess and implicate the other (lab€lg then each will be sentenced to,
say, 5 years of prison time. If one confesses and the othermitglabeledN), then the “rat” goes
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free for his cooperation with the authorities and the nonfessor is sentenced to 6 years of prison
time. Finally, if neither of them confesses, then both sotpget to serve one year.

We can compactly represent this story as in Figure 1.2 wherassume that the utility of a
year in prison is-1 for each suspect.

Figure 1.2: Prisoners’ Dilemma.

Player 2
C N
C|-5-5]| 0,-6
PI 1 ’ ’
ayer N| -60 | —-1-1

For instance, the best outcome for the player 1 is the caséichvine confesses and the player
2 does not. The next best outcome for player INsN), and then C,C) and finally (N,C). A
similar interpretation applies to player 2.

How would you play this game in the place of player 1? One usdfservation is the follow-
ing: no matter what player 2 intends to do, playDgields a better outcome for player 1. This is
so becauseQ;C) is a better outcome for him thaiN(C), and C,N) is a better outcome for him
than (N,N). So, it seems only “rational” for player 1 to pl&/by confessing. The same reasoning
for player 2 entails that this player too is very likely topla. A very reasonable prediction here
is, therefore, that the game will end in the outcor@eQ) in which both players confess to their
crimes.

And this is the dilemma: wouldn’t each of the players be #ribetter off by playingN in-
stead? After all, ,N) is preferred by both players t€(C). It is really a pity that the rational
individualistic play leads to an inferior outcome from thergpective of both players.

You may at first think that this situation arises here onlyause the prisoners are put into
separate cells and hence are not allowed to have pre-plagnaaioation. Surely, you may argue,
if the players debate about how to play the game, they wouallizesthat [, N) is superior relative
to (C,C) for both of them, and thus agree to pldynstead ofC. But even if such a verbal agreement
is reached prior to the actual play of the game, what makg&pthaso sure that player 2 will not
backstab him in the last instant by playi@g after all, if player 2 is convinced that player 1 will
keep his end of the bargain by playily it is better for her to playC. Thus, even if such an
agreement is reached, both players may reasonably feaybktand may thus choose to betray
before being betrayed by playiiyy we are back to the dilemma.

0 What do you think would happen if players could sign bindingtcacts?

Even if you are convinced that there is a genuine dilemma, lyexe may be wondering why
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we are making such a big deal out of a silly story. Well, firsterthat the “story” of the prisoners’
dilemma is really only a story. The dilemma presented abareespond to far more realistic
scenarios. The upshot is that there are instances in whicimnttrdependence between individuals
who rationally follow their self-interest yields sociallyndesirable outcomes. Considering that
one of the main claims of the neoclassical economics is #i&sls pursuit of individual welfare
yields efficient outcomes (the famous invisible hand), tiiservation is a very important one, and
economists do take it very seriously. We find in prisonergrdima a striking demonstration of the
fact that the classical claim that “decentralized behawiglies efficiency” is not necessarily valid
in environments with genuine room for strategic interactio

£ Prisoners’ dilemma type situations actually arise in magresting scenarios, such
as arms-races, price competition, dispute settlementsawitvithout lawyers, etc. The
common element in all these scenarios is that if everybodgaperative a good outcome
results, but nobody finds it in her self-interest to act coageely, and this leads to a less
desirable outcome. As an example consider the pricing ganaelacal wheat market
(depicted in Figure 1.3) where there are only two farmersthag can either set a low
price L) or a high price ). The farmer who sets the lowest price captures the entire
market, whereas if they set the same price they share thestreglaally.

Figure 1.3: Pricing Game.

Farmer B

L H

L |11 |40

Farmer A 2 2
arme H | 04 | 22

This example paints a very grim picture of human interastidndeed, many times we observe
cooperation rather than its complete failure. One imporéa@a of research in game theory is the
analysis of environments, institutions, and norms, whittialy sustain cooperation in the face of
such seemingly hopeless situations as the prisoners’ gilem

Just to illustrate one such scenario, consider a repetifatie Prisoners’ Dilemma game.
In a repeated interaction, each player has to take into atamat only what is their payoff in
each interaction but also how the outcome of each of theseaittions influences the future ones.
For example, each player may induce cooperation by the plager by adopting a strategy that
punishes bad behavior and rewards good behavior. We wilyzmauch repeated interactions in
Chapter 9.
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Example 1.4(Rebel Without a Cause) In the classic 1955 moviRebel Without a Causdim,
played by James Dean, and Buzz compete for Judy, played ljiéNdfood. Buzz’'s gang members
gather by a cliff that drops down to the Pacific Ocean. Jim anzizBare to drive toward the cliff;
the first person to jump from his car is declared the chickeeredis the last person to jump is a
hero and captures Judy’s heart. Each player has two stategimp before the other playeB)(
and after the other playeA]. If they jump at the same timé(B), they survive but lose Judy. If
one jumps before and the other after, the latter survive a&tsl fudy, whereas the former gets to
live, but without Judy. Finally, if both choose to jump aftee other A, A), they die an honorable
death.

The situation can be represented as in Figure 1.4.

Figure 1.4: Game of Chicken.

Buzz
B A
Jim 2,2 1,3
3,1 | 00

The likely outcome is not clear. If Jim thinks Buzz is goingjaonp before him, then he is
better off waiting and jumping after. On the other hand, ifthimks Buzz is going to wait him
out, he better jumps before: he is young and there will berathdys. In the movie Buzz'’s leather
jacket’s sleeve is caught on the door handle of his car. Haatgomp, even though Jim jumps.
Both cars and Buzz plunge over the cliff.

Game of chicken is also used as a parable of situations whélmare interesting than the
above story. There are dynamic versions of the game of amickled thewar of attrition. In a
war of attrition game, two individuals are supposed to takeetion and the choice is the timing
of that action. Both players desire to be the last to takedhtibn. For example, in the game of
chicken, the action is to jump. Therefore, both playersdrwait each other out, and the one who
concedes first loses.

Example 1.5(Entry Game) In all the examples up to here we assumed that the playemr eith
choose their strategies simultaneously or without knovting choice of the other player. We
model such situations by using what is knowrsasategic (or Normal) Form Games

In some situations, however, players observe at least sbthe moves made by other players
and therefore this is not an appropriate modeling choicke Ti@ example th&ntry Gamelepicted
in Figure 1.5. In this game Peps$t)(first decides whether to enter a market curently monopalize

Lin real life, James Dean killed himself and injured two pagses while driving on a public highway at an estimated
speed of 100 mph.
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Figure 1.5: Entry Game

Table 1.1: Voters’ Preferences

voter 1 voter2 voter 3

A B S
S A A
B S B

by Coke C). After observing Pepsi's choice Coke decides whether tut tige entry (F) by, for
example, price cuts and/or advertisement campaigns, oiesmg (A).

Such games of sequential moves are modeled using what isnkaskixtensive Form Games
and can be represented by a game tree as we have done in Figure 1

In this example, we assumed that Pepsi prefers enteringfddbke is going to acquiesce, and
Coke prefers to stay as a monopoly, but if entry occurs itggeefo acquiesce; hence the payoff
numbers appended to the end nodes of the game.

0 What do you think Pepsi should do?
O Is there a way for Coke to avoid entry?

Example 1.6(Voting). Another interesting application of game theory, to pdditiscience this
time, isvoting As a simple example, suppose that there are two competilsg Aiand B, and
three legislators, voters 1, 2 and 3, who are to vote on th#ise Bhe voting takes place in two
stages. They first vote between A and B, and then between timeewof the first stage and the
status-quo, denoted S. The voters’ rankings of the altessaare given in Table 1.1.

First note that if each voter votes truthfully, A will be thenmer in the first round, and it will
also win against the status-quo in the second round. Do yiok this will be the outcome? Well,
voter 3 is not very happy about the outcome and has anothetomayte which would make him
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Figure 1.6: Voting Game
Second Roundq——— A

First Round

B Second Round——> S

happier. Assuming that the other voters keep voting trillihfshe can vote for B, rather than A,
in the first round, which would make B the winner in the firstmduB will lose to S in the second
round and voter 3 is better off. Could this be the outcome?,\Welv voter 2 can switch her vote
to A to get A elected in the first round which then wins againsbiice she likes A better than S
she would like to do that.

We can analyze the situation more systematically startiomg the second round. In the second
round, each voter should vote truthfully, they have nothimgain and possibly something to lose
by voting for a less preferred option. Therefore, if A is thiamer of the first round, it will also win
in the second round. If B wins in the first round, however, thecome will be S. This means that,
by voting between A and B in the first round they are actuallyngpbetween A and S. Therefore,
voter 1 and 2 will vote for A and eventual outcome will be A.ggggure 1.6.)

Example 1.7 (Investment Game with Incomplete Informatior§o far, in all the examples, we
have assumed that every player knows everything about the,gacluding the preferences of the
other players. Reality, however, is not that simple. In msityations we lack relevant information
regarding many components of a strategic situation, su¢heaslentity and preferences of other
players, strategies available to us and to other playars Setch games are known @mes with
Incomplete (or Private) Information

As an illustration, let us go back to Example 1.2, which we ifyody assuming that Ali is
not certain about Beril's preferences. In particular, assthat he believes (with some probability
p) that Beril has the preferences represented in Figure adlwgth probability 1— p he believes
Beril is a little crazy and has some inherent tendency to tekes, even if they are unreasonable
from the perspective of a rational investor. We representtdw situation in Figure 1.7.

Figure 1.7: Investment Game with Incomplete Information

Beril Beril
Bonds Venture Bonds Venture
Bonds | 110,110 | 110,100 110,110 | 110120
Venture | 100110 | 120,120 100,110 | 120120

Normal (p) Crazy (1- p)
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If Ali was sure that Beril was crazy, then his choice would Eac he should choose to invest
in the venture. How small should be for the solution of this game to be both Ali and Beril,
irrespective of her preferences, investing in the ventuBfpose that “normal” Beril chooses
bonds and Ali believes this to be the case. Investing in bgmelds $110 for Ali irrespective of
what Beril does. Investing in the venture, however, hasdheviing expected return for Ali

px 100+ (1— p) x 120= 120— 20p

which is bigger than $110 i < 1/2. In other words, we would expect the solution to be investme
in the venture for both players if Ali's belief that Beril isazy is strong enough.

Example 1.8(Signalling) In Example 1.7 one of the players had incomplete informabiginthey
chose their strategies without observing the choices obther player. In other words, players did
not have a chance to observe others’ behavior and possénly feom them. In certain strategic
interactions this is not the case. When you apply for a jobetample, the employer is not exactly
sure of your qualities. So, you try to impress your prospedtioss with your resume, education,
dress, manners etc. In essence, you trgigmal your good qualities, and hide the bad ones, with
your behavior. The employer, on the other hand, has to figutrevbich signals she should take
seriously and which ones to discount (i.e. she triescteengood candidates).

This is also the case when you go out on a date with someonbddirst time. Each person
tries to convey their good sides while trying to hide the bads) unless of course, it was a failure
from the very beginning. So, there is a complex interactibsignalling and screening going on.
Suppose, for example, that Ali takes Beril out on a date. |IB®going to decide whether she is
going to have a long term relationship with him (call that nggag) or dump him. However, she
wants to marry a smart guy and does not know whether Ali is sararot. However, she thinks he
is smart or dumb with equal probabilities. Ali really wantsmharry her and tries to show that he
is smart by cracking jokes and being funny in general dutiiegdate. However, being funny is not
very easy. It is just stressful, and particularly so if ondusnb, to constantly try to come up with
jokes that will impress her. Figure 1.8 illustrates theatiton.

What do yo think will happen at the end? Is it possible for a Hwmrsion of Ali to be funny
and marry Beril? Or, do you think it is more likely for a smaitti & marry Beril by being funny,
while a dumb Ali prefers to be quite and just enjoys the foagnef the date is not going further
than the dinner?

Example 1.9(Hostile Takeovers)During the 1980s there was a huge wave of mergers and acqui-
sitions in the Uniter States. Many of the acquisitions tduok fiorm of “hostile takeovers,” a term
used to describe takeovers that are implemented againstlthaf the target company’s manage-
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Figure 1.8: Dating Game
2,1 11

marry marry

quite A funny

smart
B God B

dumb

quite A funny

dump dump
0,1 -3,1

ment. They usually take the form of direct tender offers tarsholders, i.e., the acquirer publicly
offers a price to all the shareholders. Some of these terifis avere in the form of what is known
as “two-tiered tender offer.”

Such was the case in 1988 when Robert Campeau made a termldoofederated Department
Stores. Let us consider a simplified version of the actuays&uppose that the pre-takeover price
of a Federated share is $100. Campeau offers to pay $105auerfeih the first 50% of the shares,
and $90 for the remainder. All shares, however, are boudieadverage price of the total shares
tendered. If the takeover succeeds, the shares that werenusred are worth $90 each.

For example, if 75% of the shares are tendered, Campeau pagst& the first 50% and pays
$90 to the remaining 25%. The average price that Campeaup#y=n equal to

50 25

=100

In general, ifs percent of the shares are tendered the average price paidrbggau, and thus
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the price of a tendered share, is given by

105 if <50
105x 2 +90x =20 if s> 50

S

Notice that if everybody tenders, i.85 100, then Campeau pays $97.5 per share which is less
than the current market price. So, this looks like a good filgaCampeau, but only if sufficiently
high number of shareholders tender.

O If you were a Federated shareholder, would you tender yanestto Campeau?

[0 Does your answer depend on what you think other shareholdiico?

[0 Now suppose Macy'’s offers $102 per share conditional updaiing the majority.
What would you do?

The actual unfolding of events were quite unfortunate fam@@au. Macy’s joined the bidding
and this increased the premium quite significantly. Campieally won out (not by a two-tiered
tender offer, however) but paid $8.17 billion for the stodkaocompany with a pre-acquisition
market value of $2.93 billion. Campeau financed 97 percetii@purchase price with debt. Less
than two years later, Federated filed for bankruptcy and @amnfost his job.

1.3 Our Methodology

So, we have seen that many interesting situations invohategfic interactions between indi-
viduals and therefore render themselves to a game thealretiody. At this point one has two
options. We can either analyze each case separately or wéryntyfind general principals that
apply to any game. As we have mentioned before, game theowdess tools to analyze strate-
gic interactions, which may then be applied to any arbitigagne-like situation. In other words,
throughout this course we will analyze abstract games, aggest “reasonable” outcomes as solu-
tions to those games. To fix ideas, however, we will discugtiGgiions of these abstract concepts
to particular cases which we hope you will find interesting.

We will analyze games along two different dimensions: (&)drder of moves; (2) information.
This gives us four general forms of games, as we illustrai@bie 1.2.
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Table 1.2: Game Forms

Information
Complete Incomplete
Strategic Form Games Bayesian Games
Simultaneous  with Complete Information
Moves Example 1.2 Example 1.7
Extensive form Games Extensive form Games

Sequential with Complete Information  with Incomplete Imf@tion
Example 1.5 Example 1.8
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Chapter 2

Strategic Form Games with Complete
Information

2.1 Preliminaries

The simplest form of strategic interdependence prevailsomtexts in which the actions are
either taken simultaneously or without the knowledge ofoacthoices of the other players. To
model such a setting, all we need to do is to specify the seattefdcting individuals (commonly
called the players), the set of actions available to thedigiduals, and a description of the incen-
tives regarding the modeled interaction. That is, we needite down the who, what and why of
the setting we are trying to model.

Formally speaking, we need exactly three objects to defirmreegn strategic form.

Definition. A strategic form gamé composed of

[0 Setofplayers : N
O Asetofactions : A for each player
O A payoff function: u;:A— R for each player

In general, we name the players by integers and denote aiggteyer byi, whom we call
playeri. However, this choice is arbitrary and one may choose to nam@layers differently.
In the chicken game of Example 1.4 on page 13, for examplesahef players is given b{ =
{Jim,Buzz.

We interpretA; as the set of all available actions (or strategies) to play@hat is, for player
i,"playing the game” means choosing an action from theAseffor instance, in the children game

21
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“rock, scissors and paper,” the action space for each play@ock, scissors, papgrand in the
prisoners’ dilemma the action space for each playgf confess, not confe$gi.e. {C,N}).
Given the action spaces of the players, we definetlieome spacef the game as

A= xieNA ={(a1,...,an) g €A,i=1..,n}.

An outcome a= (a, ..., an) is thus nothing but an action profile.

To be able to formulate the decision problem of a player invamgistrategic environment, we
need to know about the preferences of this individual. Fdyattions represent these preferences.
The interpretation of a payoff function is identical to tledita utility function that you might have
encountered in a microeconomics coursey; (&, ...,an) > Ui(b,...,by), then we understand that
playeri likes outcomea = (ay, ...,a,) strictly better than the outcom®e= (by,...,b,). The crucial
observation is that the payoff of the playatepends not only on the action chosen by playmirt
also on the action choices of the rest of the participatimgegis. As we have discussed before, this
is a crucial element distinguishing a game theoretic deeiproblem from a single agent decision
problem.

We should note that, at this level of generality, we treatitestent likeu;(a) > u;i(b) as purely
ordinal, that is, without attaching any meaning to the differenge) — u;(b). All we know in the
formulation so far is how the individuatlank the outcomes, not how much “utils” they derive from
them. For instance, in the prisoners’ dilemma game corsitigioove, assigning payoff 0 for player
1 to the outcome (N,C) was arbitrary; any number would do sg las it is strictly smaller than
that assigned t@C,C) (which must be strictly smaller than that assignedNoN) which, in turn,
must be strictly smaller than that assigned@N)). In later sections, when we start analyzing
cases in which individuals face uncertainty, we will haventodify this assumption.

Summing up, we define formally a game in strategic form asupket

(N, {A}ien; {Ui}ien)-

(Note that the term “normal form game” is also used in thediiere.) Thus, when we talk about
a “game in strategic form” we have in mind a setup in which ki information is provided. In
particular, if the game is played by only two players (so fRat {1,2}), we need exactly four
pieces of information:

(A1,A2, U, Up).

Therefore, if each player has finitely many actions avaélablhim/her, then we can represent a
2-person game in strategic form by means diraatrix, as we have done in examples 1.2-1.4 in
Chapter 1. In such a representation our convention is altveatplayer 1 (who is a male) chooses
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the rows and player 2 (who is a female) chooses the columns.

£ A game in strategic form attempts to capture a scenario ithwiiere is strategic

interdependence among a set of players who either takeabigans simultaneously or
without observing the actions chosen by others. Therefore, stcdtmygn games are not

suitable to model situations where individuals take astioma sequential manner after
observing the actions taken before.

A crucial assumption in our model of a game in strategic fosnthiat everything about the
formulation of the game (that is the set of players, the seictibns and the utility functions) are
all known by each player in the game. What is more, each pllayews that all players know
everything about the game, and all players know that eagleplknows that all players know ev-
erything about the game, and so on. Believe it or not, at agbhical level, all this matters. But
we shall not concern ourselves much with this issue; we simalply postulate that the primitives
of a game izommon knowledgeithout worrying too much about what this really meandé/hat
is more, there is no uncertainty pertaining to the actiordlabie to the players and to their payoff
functions. This makes the game form defined in this sectidnateglic form game with complete
information. In later sections we will have a chance to seg ttomodel situations involving dy-
namic interaction as well as incomplete information on tag pf some players.

As with any other new concept, the best way to come into grijs the games in strategic
form is to study several specific examples, hence the netibeec

2.2 Examples

Example 2.1(Prisoners’ Dilemma)Recall that the prisoners’ dilemma scenario we have discliss
in the introduction was represented by the bimatrix

Figure 2.1: Prisoners’ Dilemma.

Player 2
C N
C|-5-5]| 0,—6
PI 1 ! ’
ayer N | —6,0 -1-1

1Trying to model the idea of “common knowledge” requires senahematical sophistication which is best avoided
at this stage. We shall thus do no more on this topic than rewamding to the interested reader the excellent survey of
J. Geanakoplos (1992), “Common knowledgiurnal of Economic Perspectivéspp. 53-82.
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Here we haveh; = {C,N} = A so thatA = {(C,C),(C,N),(N,C),(N,N)} andu;(C,C) =
—5,u2(N,C) =0,..., and so on. You should make sure you understand that therbimat

Figure 2.2: General Prisoners’ Dilemma.

Player 2
C N
C | bb |da
Player 1 2 2
y N |ad | cc

also represents the same game whenaveb < ¢ < d.

Example 2.2(Battle of the Sexes)Ali and Beril are married and they are in their offices on a
Friday evening trying to figure out what they should do afterky They cannot not get in touch
with each other but would like to meet and spend the eveniigggo a movie or an opera. Al
likes movies better while Beril would rather go to an operaowidver, being in love, the most
important thing for them is to do something together; bo#wthe night “wasted” unless they
spend it together.

We may represent this story as a 2-person game in strategickfp means of théimatrix in
Figure 2.3

Figure 2.3: Battle of the Sexes.

Beril

m o]

A M 2,1 (00
o |00 | 12

Here we havéN = {Ali,Beril} andAaji = Agerii = {m,0} so that

A= {(m,m),(m,0),(0,m),(0,0)},

andupji(o,m) = 0,ugerii(0,0) = 2,..., and so on. (Once again the choice of utility values is arbi-
trary other than the ranking of the outcomes it entails.)elttke prisoners’ dilemma, battle of the
sexes is also a famous example in game theory that will heijusrate many interesting con-

cepts later on. So perhaps now is a good time for you think tafbmy you would play this game
in actuality.

What is your prediction about the outcome of this game
O with preplay communication?
O without preplay communication?
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Example 2.3(A Pure Coordination Game) Suppose now that Ali (call him player 1) and Beril
(player 2) are supposed to meet after work either in Grandr@le®tation G) or Penn StationR).
Unfortunately, neither knows where for sure. They woule [tk meet and, both of their offices
being on the West side, they would rather meet in Penn Stefiopwe havé; = A, = {G,P} and
the game being played is represented by the bimatrix in Eigut.

Figure 2.4: Coordination Game.

G P
G[11]00
P |00 |22

This game too is an interesting one, and we shall come badkater when we discuss the
effects of preplay communication among the players. For, aswyourself if your prediction about
how this game would actually be played depends on whethptgyreommunication is allowed or
not.

Example 2.4(Matching Pennies)Ali and Beril finally meet and try to decide whether to go see
a movie or an opera. Neither one of them concedes to the atidethay decide to play matching
pennies to choose where to go. Each of them conceals a petiminipalm either with its face up
(headsH) or face down (tailsT). Both coins are revealed simultaneously. If they matchwtis
and if they are different Beril wins. The bimatrix is givenkigure 2.5.

Figure 2.5: Matching Pennies.

H T
H [21 12
T 1,221

What is your prediction about the outcome of this game

[0 Write down the outcome space of this game algebraically.

0 Provide another bimatrix that corresponds to the same soattescribed above.
0 Do you see an “obvious” way of playing this game?

Before considering an economically motivated exampleydetote that the Prisoners’ DiIemmS@lmmetric games

and Coordination Game are (two-pers@ynmetric gamei the sense that they satisfy the fol-
lowing two conditions:

1. A; = Ay, that is, each player has the same action set
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2. ui(ag,ap) = W(ap, ) forallg € A, i=1,2

In other words, if we exchange the actions of the playersnthhén-person case, any two players’
holding everyone else’s action fixed), then the payoffs eséhplayers are also exchanged. (Notice
that this implies that the two players must receive the saayefpwhen they both choose the same
action.)

For instance, in Prisoners’ Dilemmay (C,C) = 1 = up(C,C),u1(C,N) = 6 = uz(N,C), etc.
On the other hand, the Battle of the Sexes and Matching Pegaimes are not symmetric. Figure
2.6 gives two other examples of asymmetric games.

Figure 2.6: Two Assymetric Games

L R L M R
U [o01]20 U [10][12 01
D|10]01 D |03 [0,1] 20

The symmetric games are in general simpler than asymmetneeg because reasoning from
the point of view of one player is sufficient in such games tdaratand how the other players
reason as well. We shall utilize this fact in many examples we shall consider in this book.

Let us now examine a slightly more sophisticated example stfategic form game. This
example plays a fundamental role in the theory of industighnization, and we shall work out
several variations of it in the sequel.

Example 2.5(Cournot Duopoly Model) Consider a market for a single (homogeneous) good
whose market inverse demand function is

P=D(Q), Q=0

whereP is the price of the good ar@ is the quantity demanded. We assume that the fun@ian
monotonically decreasing. Suppose that there are exaadlfitms producing this good. The cost
functions of these firms are

CG=0G(Q), Q=0i=12

whereC; is a twice differentiable function defined &, with C/ > 0 andC’ < 0.
We may model the market interaction of these firms as a 2-pegame in strategic form as
follows:

(i) N={1,2}.
(i) A =[0,Q]; thus(Q1,Qz) € A= [0, Q]2 means that firnhis producingQ; units at the outcome
(Q1,Q2). The vaIueQ_> 0 is an upper bound on the level of production of firms acting@apacity

constraint



2.2. Examples 27

(ii)) ui(Q1,Q2) =D(Q1+Q2)Qi —Ci(Q;) for eachQ; € A, i = 1,2.

This model is mathematically too general to allow for a ety easy analysis. For this reason,
a common specification adopted in the literature posits ititiath that the firms operate under
identicalconstant unit costso thatC;(Q;) = cQ and that the market demand is given as

P— a_bQ7 OSQSa/b
1 o a/b<Q

with a > ¢ > 0 andb > 0 being given parameters. To simplify the analysis furthersetQ in this
specification equal ta/b; this is meaningful since no firm would realistically proéuan output
level that exceeda/b in this setting as this would entail making negative profitée refer to this
model as thdinear Cournot modeland observe that the payoff function of fiirim this model is:

(@a—b(@Q+Q2)Q—cQ, 0<Qi+Q2<a/b

Ui(Ql,Qz):{ _cQ, a/b<Q1+Q2

for eachQ; € A, i = 1,2. Therefore, the associated 2-person game in strategic foeymmetric
(while this is not necessarily the case in the general model)

The important thing to note in the Cournot model is that, kenthe market structures of perfect
competition (where all firms disregard the actions of othendisince each firm is assumed to be
negligible in the market) and of monopoly (where there is tieepfirm around to matter), one
firm’s action does not alone determine the outcome. Thus,eeed the apparatus of game theory
to provide a prediction with respect to the market outcome.

We shall later encounter many more examples of games iregitafiorm. But now it is time
that we turn to the question of how to play a strategic game.
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Chapter 3

Strategic Form Solution Concepts

3.1 Dominant Strategy Equilibrium

The problem of a player in a strategic game is to decide up@téon to take without knowing
which actions will be taken by her opponents. Thereforehéadividual has to form a conjecture
regarding the action choices of the other players, and shief always an easy task. But, in some
cases, this difficulty does not really arise, because treamioptimal way of taking an action
independentlyof the intended play of the others. We have in fact alreadyeniered such a
situation in the prisoners’ dilemma. Indeed, taking thecumperative action of confessing, is
optimal for, say player 1, in the prisoners’ dilemma no nratthat player 2 is planning to do. In
this sense, we say that there is an “obvious” way of playirgptisoners’ dilemma for player 1
(and similarly for player 2): choosing. We formalize such sure-fire actions in general as follows.

Let A= xjcnAj be the outcome space of arperson game in strategic form, and &t
(aq,...,an) € A. For each, we let

ai=(ai,...,8-1,8+1,..-,8n)

and writea = (&,a_j). Clearly,a_; is nothing but a profile of actions taken by all players in the
game other than We denote the set of all such profiles convenientlAas Formally speaking,
we haveA_j = XjeN\{i}Aj-

29
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Definition. An actiona € A; weakly dominateactionb; € A for playeri if
ui(a,a i) > u(bj,a;) forallajeA

and
ui(a,ai) > u(bi,a_j) forsomea ;€A

It strictly dominates hif
ui(a,a i) > u(b,aj) forallajeA.

In other words, an actiog, weakly dominates another actitnfor playeri, if, irrespective of
what other players do, actic® does at least as well as actiby and for some action profiles of
the other players; does strictly better thaby;. If g is strictly better tharb;, irrespective of what
other players do, then we say tlastrictly dominated;.

Definition. An actiong; € A; is weakly dominanif it weakly dominates every action in
A. ltis calledstrictly dominanif it strictly dominates every action iA;.

O A dominant action must be unique. Why?

To reiterate, a dominant strategy for a player is an actian it optimal for this player no
matter what his opponents do. Put differently, a player witthominant action does not have to
worry about how his opponents will play the game; for anydfehat he might have about the plans
of actions by others, playing a dominant action is optimatn§equently, there is good reason to
believe that rational players would play their dominanta in a given game (of course, provided
that such actions are present). This idea leads us to tlwevialy equilibrium concept.

Definition. Weakly dominant strategy equilibriuof a gameG in strategic form is de-
fined as the weakly dominant action profile, and is denote®¥4G). Replacing the
word “weakly” with “strictly” yields the definition for thestrictly dominant strategy equi-
librium, which is denoted b{ps(G).

As we noted earlier, the actid is strictly dominant for both players in prisoners’ dilemma
(PD). ThusD3(PD) = {(C,C)}, which is also the weakly dominant strategy equilibriunmcsi a
strictly dominant action is also a weakly dominant actiors ak example of a weakly dominant
strategy equilibrium which is not strict, consider
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L R
uj|21|02
D|23]|43

In this game there is no strictly dominant strategy equilior. There is, however, a weakly
dominant strategy equilibrium given by the action profle R).

Dominant strategy equilibrium is quite a reasonable dopiilm concept which does not de-
mand an excessive amount of “rationality” from the playeltsonly demands the players to be
(rational) optimizers, and does not require them to know titva others are rational too. Unfortu-
nately, this concept is silent in many interesting gamesesihe existence of a dominant action for
all players in a given game is a relatively rare phenomenon.

Verify that there is no dominant strategy equilibrium in tbowing games:
[0 Battle of the Sexes

0 Coordination Game

O Matching Pennies

0 Cournot Duopoly

It seems that we need to demand more rationality from theepdato obtain more powerful
predictions. We now turn to a systematic way of doing this.

3.2 Dominance Solvability

We have argued above that a “rational” player would play aidant action (when such an
action exists). Turning this argument on its head, we may Hay that a “rational” player would
never play an action when there is another action availableet that guarantees strictly more

payoffs for this player irrespective of the intended playtifers. We refer to such an action as a
strictly dominated action. Formally,
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Definition. Take a game in strategic form and consider any two actgiis € A; for any
playeri € N. We say thag; is strictly dominatedby by if

u(a,a i) < u(b,a) forallajeA.
We say thag; is weakly dominatedby by if
ui(a,a i) <ub,a ) foralla_jecA_

while
ui(a,a i) < u(bi,a_j) forsomea ;€A

A fundamental premise in game theory is that “rational” playdo not play strictly dominated
actions. For, as the argument goes, there is no belief tHayampmay hold about the intended play
of others such that a strictly dominated action is optimdierEfore, given a gam@ in strategic
form, it makes sense to eliminate all the strictly dominatetions for any one of the players; after
all “rational” players know that this player will not takeyasuch action. But if all players ponder
about how to play the game after eliminating (in their heatis¢tly dominated actions of a given
player, then the actual game being playeéffectivelya smaller game than the original one. But
then why don't we search for strictly dominated actions is #maller game, that is, eliminate next
the strictly dominated actions of another playequiring “dominance” only against actions not
yet eliminated And why not continue this way as far as we can?

Well, doing this may or may not be a reasonable thing to do mi#¢ipg on the context. Nev-
ertheless, this elimination process, which is calleditémted elimination of strictly dominated
(IESD) actions certainly leads us to an interesting equilibrium concdtst of all, it yields an
extension of the strictly dominant strategy equilibrium.hM this is formally obvious, it is an
important observation and we state it as a proposition.

Proposition 3.1. If both players have strictly dominant actions, then IESHiars leads to the
unique dominant strategy equilibrium.

Proof. Obvious. O

Moreover, the IESD actions may apply in many games with noidant strategy equilibrium,
and may yield a prediction concerning the play of the gama éwe player has a dominant action.
This prediction may even be sharp enough to entail a unigtemme. In this case we say thatis
dominance solvable.
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Definition. A strategic form game islominance solvablé IESD actions leads to a
unigue outcome.

Prisoners’ Dilemma is dominance solvable by Propositidn ®n the other hand, the IESD
actions does not at all refine the outcome space in Battleedéxes since neither of the players has
a strictly dominated action in this game. In other wordsBatf the Sexes game is not dominance
solvable.

As a less trivial example, consider the game

L M R
u|10|12 01
D|03|01]|20

which does not possess a dominant strategy equilibriume®eghat R is strictly dominated for

player 2 (by action M). Therefore, in the first stage of thelf8ocess, we eliminate R. The idea is
that player 1, being “rational,” knows that player 2 will may R, and views the game effectively
as

L | M
uj|10| 12
D|03|01

But player 2, being “rational,” knows that player 1 is reatipntemplating about how to play this
smaller game, and notices that in this game D is strictly dawteid for player 1. So player 2
eliminates (in his head) the action D for player 1. This isdheond stage of the IESD process and
leaves us with the game

L | M
uj|10| 12

We now reach to the final stage of the IESD process where wénalieL for player 2. Hence this
game is dominance solvable, and IESD actions leads to tlteroet (U,M).

Observe that applying the process of IESD actions in the chadinite game is technically
easy. In the example above, for instance, the outcome is dliatedy obtained by eliminating first
R, then D and then L. However, you should keep in mind that dingér this process takes, the
more “he knows that she knows that he knows that ...” sortagerings are used, and hence the
“more rational” we demand the players should be. Put difféyefor the IESD actions to make
conceptual sense, not only that each player must not tak#ystfominated actions, but also that
each player must know that her opponent won't do so, that legv&rthat her opponent knows
that he won't do so, and so on. So, this concept is less plausitcomplicated games. Here is
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an example of a dominance solvable game which requires thyend to be, in a certain sense,
“infinitely rational.” You should decide for yourself howasonable is the IESD actions in this
example.

Example 3.1. We consider the linear Cournot model. Observe that

du(QLQ) | (a-0)—-2bQ-bQ,;, 0<Q1+Q2<a/b
dQ, —c, a/b<Q1+Q2

S0 no matter wha), is, f,’—gll < 0 whenQq > &° (This is perhaps a bit too swift, make sure you
understand this step.) Thus any production l&@eb> &:° is strictly dominated (by2;°). In the
first stage of the IESD actions process, therefore, we editaiallQ; > &%, i =1,2. Consequently,
we haveQ; + Q2 < a/b after one iteration. (As we discuss at the end of this sectl@order of
elimination does not matter for the final outcome in the cd4&8D actions, so we can eliminate
the strictly dominated actions of the firms simultaneojisBonsequently, given th&, < &, we
have

dU]_ .
ﬁ =(a—c)—2bQ; —bQ
> (a—c) —Zle—b(%:>

o) that(%l1 > 0 whenQ; < &:°. Thus, we eliminate al); < 2:°,1=1,2. But, given thaQ, > &,
one can similarly show th% < 0whenQ; > 329 jterating infinitely may times, then, only the
outcome( 85", &5°) survives the IESD actionsChallenge prove this.) Hence the linear Cournot

model is dominance solvable.

We define théterated elimination of weakly dominated (IEWBgtions in a way analogous
to the IESD actions. But, as we shall see, this is a somewheg problematic notion than IESD
actions. To begin with there is a possible contradictiorhinpirocedure: the argument behind not
using weakly dominated actions is that if there is uncetyaimthe mind of players as to the action
choice of the other players then a weakly dominated actionldmot be used. For example, in the

following game
L R

21|02
D|23]|43

Cc
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player 1 should not use action U if there is a small probahiitithis mind that player 2 will play R.
Yet, the procedure of eliminating weakly dominated actiovay involve deleting actions to which
the player previously assigned a positive probability. Sioer in the following game

L R
uj|31|20
M|40]|11
D|44]|24

we may delete U assuming that player 1 assigns a positiveeff@vemall) probability to the event
that player 2 will play action L. Given U is deleted, then @ag’s action L becomes weakly dom-
inated and hence it can be deleted, i.e., it is going to besplayith zero probability, contradicting
the reason why action U was deleted to begin with.

Nevertheless, IEWD actions is used widely in economic apfibns of game theory, and we
too will utilize this concept on occasion. Let us illustrdig means of two examples the power
(and perhaps also the potential counter intuitiveness, demide for yourself) of the notion of
IEWD actions.

Example 3.2(Guess-the-average gam&onsider am-person strategic game in which each player
picks an integer between 1 and 999.1%e- {1,...,n} andA; = {1,...,999}. Let us writea for the
mean of the action profiléay, ...,a,), that is,a= [ ;& /n. The winners in this game are those
players whose choice of integer is closesgﬁ.‘:1

* First take about five minutes to decide how you would plag game.

» Observe next that IESD actions does not provide a sharpaticed here; this game is not
dominance solvable.

» Let us now apply IEWD actions. Take any player. This playeows that no matter what
the other players play, the two-thirds of the average ba&iéwinot exceed 666. But then
any integer larger than 666 is weakly dominated by 666 fa itdividual (why weakly?).
Since this is true for all players, IEWD actions demands thateliminate all actions in
{667,...,999}. But the argument can be repeated, for every strateg¢4, ...,666} is now

1Forma||y, we may writey(ay, ...,an) = 1if

24
a-3al<

2
aj— 55‘ forallj=1,..,n

andui(a, ...,an) = 0, otherwise.
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weakly dominated by 444Continuing this way (iterating finitely many times), we firftht
the only outcome that survives the IEWD action$ls.., 1)!

Example 3.3(Chairman’s Paradox)Consider a committee of three persons (named as usual 1,
2 and 3) whose task is to choose an alternative form the clseicg, 3,y} by means of voting.
The alternative will be chosen on the basis of majority s¢ éimealternative which gets two votes
wins the election. The rule is such that if there is a tie (ibaif each voter votes for a different
alternative, then the chairman of the committee, who is,dayer 3, will unilaterally decide on the
outcome of the election by declaring the alternative thdtds likes as the winner of the election.
So this is not a symmetric game, it appears that the posifiptager 3 is strategically superior to
the rest of the players.

Now assume that the preferences of the players are giventtas following list:

Player 1 Player 2 Player 3

a B y
B y a
y a B

Here the convention is that any alternative in each colunstristly preferred to the alternatives
that are below it by the corresponding player. For instaplagier 1 strictly prefersi to 3 while she
likes B strictly better thary. Therefore, given these preferences, if all voters vsiederely each
would vote for a different alternative, and in this caseypta3 would exert his additional power to
declare the alternativgas the winner of the election.

However, there is no reason why all voters should vote tulithfin principal they would do
so only if this would benefit them. What if they wish to playghioting gamestrategically? To
see what would happen in this case, let us model the scermeaayame in strategic form where
A = {a,B,y} (an action for each individual is the vote that she is goingast), and consider the
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following trimatrix representation:

a B y
al20101,2]0,1,2
B|01,2|1,2,0]01,2
vy1|0L12(0,1,2]|0,1,2

a B y
a|201]201|20,1
B[201|1,20]|0,1.2
y|201]|012]01,2

a B y
al201(120]|0,1,2
B|1,20[ 1,20/ 1,20
y|201]120]01,2

if player 3 choosey

if player 3 choosest

if player 3 choosef

Here, for instanceus(a,B,y) = 2 since in this case the outcome of the electiog wghich is the
most preferred outcome by player 3. (Check that this reptatien really corresponds to the
scenario described above.)

Our task is now to apply the IEWD actions to this game. Herenis way of doing this:
Eliminate (1)y for player 1; (2)a andy for player 2; (3)a andp for player 3; (4)a for player 1.
Hence the IEWD actions leads to the outcoffigB, y) which means that the winner of the election
is . Observe that this outcome contrasts sharply with the outcionthe case of sincere voting.
In fact, with strategic voting, we observe that the worstcoate is elected for player 3 (if you
believe in IEWD actions) who supposedly is a more powerfaypt than the others; this is why
the present game is sometimes called chairman’s paradax(What do you think is the key to
“explain” this paradoxical outcome? What if players did konbw the preferences of the others?
What if they didn't believe that the others were so terribiyast? Do you agree with the prediction
reached through the IEWD actions?)

Remark3.1 An important question that we have to deal with before we katethis section is
this: could eliminating IESD actions lead to different résif elimination takes place in different
orders? Fortunately, the answer is no. (Can you prove thigRyever, the answer would be yes
if we rather used weakly dominated actions in the iteratidfsr instance, consider the 2-person
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game in strategic form given by the bimatrix

L R
uls1|20
M|40]|1,1
D|44]24

Here if we first eliminate player 1's action U, then player &&ion L, and then player 1's action
M we get the outcome (D,R), while if we first eliminate M (aneéthR and then U) we get the
outcome (D,L). This shows that the order of elimination matin the case of IEWD actions.

3.3 Nash Equilibrium

As we have mentioned in our first lecture, one of the assumgtibat we will maintain is
that individuals are rational, i.e., they take the bestoagtito pursue their objectives. This is not
any different from the assumption of rationality, or optiing behavior, that you must have come
across in your microeconomics classes. In most of micramors, individual decision making
boils down to solving the following problem:

maxu (x,0)

wherex is the choice variable, or possible actions, (such as a cgoison bundle) of the individual,
X denotes the set of possible actions available (such as thgebset) 8 denotes any parameters
that are outside the control of the individual (such as theepvector and income), andis the
utility (or payoff) function of the individual.

What makes a situation a strategic game, however, is théhfaowvhat is best for one individual,
in general, depends upon other individuals’ actions. Thagsden problem of an individual can be
phrased in above terms by treatiigas the choices of other individuals whose actions affect the
subject individual's payoff. In other words, lettizg= g;, X = A;, and® = a_;, the decision making
problem of player in a game becomes

maxu; (&,a;) .
aeA

The main difficulty with this problem is the fact that indival does not, in general, know the
action choices of other players, ;, whereas in single decision making problefysuch as price
and income, are assumed to be known, or determined as ammitifoexogenous chance events.
Therefore, determining the best action for an individugluiees a joint analysis of every individ-
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ual’s decision problem.

In the previous section we have analyzed situations in wttichproblem could be circum-
vented, and hence we could analyze the problem by only cemsglit from the perspective of a
single individual. If, independent of the other playerstiaas, the individual in question has an
optimal action, then rationality requires taking that aetiand hence we can analyze that individ-
ual’s decision making problem in isolation from that of athelf every individual is in a similar
situation this leads to (weakly or strictly) dominant st equilibrium. Remember that, the only
assumptions that we used to reach dominant strategy equilibis the rationality of players (and
the knowledge of own payoff function, of course). Unforttetg many interesting games do not
have a dominant strategy equilibrium and this forces usdregmse the rationality requirements for
individuals. The second solution concept that we introduce., iterated elimination of dominated
strategies, did just that. It required not only the ratidgadf each individual and the knowledge
of own payoff functions, but also the (common) knowledgetbio players’ rationality and payoff
functions. However, in this case we run into other problethgre may be too many outcomes
that survive IESD actions, or different outcomes may arsseusacomes that survive IEWD actions,
depending on the order of elimination.

In this section we will analyze by far the most commonly usguailérium concept for strategic
games, i.e., the Nash equilibrium concept, which overcasnese of the problems of the solution
concepts introduced befofeThe presence of interaction among players requires easlidodl to
form a belief regarding the possible actions of other irdiigils. Nash equilibrium is based on the
premises that (i) each individual acts rationally given beliefs about the other players’ actions,
and that (ii) these beliefs are correct. It is the second etgrwhich makes this an equilibrium
concept. Itis in this sense we may regard Nash equilibriutbarae as a steady state of a strategic
interaction. Once every individual is acting in accordandth the Nash equilibrium, no one has
an incentive to unilaterally deviate and take another actiore formally, we have the following
definition:

2The discovery of the basic idea behind the Nash equilibrimesgback to the 1938 work of Augustine Cournot.
(Cournot’s work is translated into English in 1897 Researches into the Mathematical Principles of the Theéry o
Wealth New York: MacMillan.) The formalization and rigorous aysik of this equilibrium concept was not given until
the seminal 1950 work of the mathematician John Nash. Nastawarded the Nobel prize in economics in 1994 (along
with John Harsanyi and Reinhardt Selten) for his contridmgito game theory. For an exciting biography of Nash, we
refer the reader to S. Nasar (1998)Beautiful Mind New York: Simon and Schuster.



40 Strategic Form Solution Concepts

Definition. Nash equilibriumof a gameG in strategic form is defined as any outcome
(a],...,a;) such that

u(ar,a’;) > u(a,a*;) foralla € A.

holds for each player The set of all Nash equilibria @ is denotedN(G).

In a two player game, for example, an action proféé, a;) is a Nash equilibrium if the fol-
lowing two conditions hold

aj € arg maxuy (ag,a5)
acAy

a, € arg maxup(ay, a).
arcAy

Therefore, we may say that, in a Nash equilibrium, each pkyhoice of action is a best
response to the actions actually taken by his opponents.sligigests, and sometimes more useful,
definition of Nash equilibrium, based on the notion of thetlresponse correspondentewe
define thebest response corresponderafglayeri in a strategic form game as the correspondence
Bi: A_; = A given by

Bi(a i) ={a € A :u(a,ai) > ui(b,a ;) forall b € Aj}.

(Notice that, for eacta_; € A_j, Bi(a_) is a set which may or may not be a singleton.) So, for
example, in a 2-person game, if player 2 playsplayer 1's best choice is to play some action in
Bi(az),

Bl(az) = {al €A ul(al,az) > Uz(bl,az) for all by € Al}.

For instance, in the game
L M R

ul10|12|02
D|03]1120

we haveB; (L) = {U}, B1(M) = {U,D} andB;(R) = {D}, while Bx(U) = {M,R} andBy(D) =
{L}.

3Mathematical ReminderRecall that a functiorf from a setA to a setB assigns to eack € A one and only one
elementf (x) in B. By definition, acorrespondence from A to B, on the other hand, assigns to each A a subset
of B, and in this case we writé : A= B. (For instance,f : [0,1] =2 [0,1] defined asf(x) = {y € [0,1] : x <y} is
a correspondence; draw the graphfof In the special case where a correspondence is singled/idle. f(x) is a
singleton set for eacke A), thenf can be thought of as a function.
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The following is an easy but useful observation.

Proposition 3.2. For any 2-person game in strategic form G, we héag a;) € N(G) if, and only
if
a;€Bi(a;) and a; e By(a)).

Proof. Exercise. O

This proposition suggests a way of computing the Nash dwjigiliof strategic games. In par-
ticular, when the best response correspondence of therplayesingle-valued, then Proposition B
tells us that all we need to do is to solve two equations in tmknowns to characterize the set of
all Nash equilibria (once we have fouBd andB,, that is). The following examples will illustrate.

Example 3.4. We haveN(BoS) = {(m,m), (0,0)} (and both of these equilibria are strict). Indeed,
in this game,B1(0) = {0}, Bi(m) = {m}, Bz(0) = {0}, andBz(m) = {m}. These observations
also show tha{m,0) and (o,m) are not equilibrium points of BoS. Similar computationslgie
N(CG) = {(I,I),(r,n} andN(MW) = 0.

An easy way of finding Nash equilibrium in two-person stratdgrm games is to utilize the
best response correspondences and the bimatrix représentéou simply have to mark the best
response(s) of each player given the action choice of ther gitayer and any action profile at
which both players are best responding to each other is a &@slibrium. In the BoS game, for
example, given player 1 plays m, the best response of playgt®play m, which is expressed
by underscoring player 2’s payoff at (m,m), and her bestaese to o is 0, which is expressed by
underscoring her payoff at (0,0).

m (0]
m|21|00]|
00012

The same procedure is applied to player 1 as well. The set sl Mguilibrium is then the set of
outcomes at which both players’ payoffs are underscored(in, m), (0,0).

Nash equilibrium concept has been motivated in many difteveays, mostly on an informal
basis. We will now give a brief discussion of some of theseivations:

Self Enforcing Agreements Let us assume that two players debate about how they should
play a given 2-person game in strategic form through prepaymunication. What sort of an
agreement would they reach? Of course, we cannot give aspradiswer to this question before
knowing more about the specifics of the game, but this muchanesay: the agreement (whatever
it is) should be “self enforcing” in the sense that no playsoudd have a reason to deviate from
her promise if she believes that the other player will keepehnid of the bargain. Put informally, a
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Nash equilibrium is an outcome that would correspond tofaesdbrcing agreement in this sense.
Once it is reached, no individual has an incentive to devratm it unilaterally.

Social Conventions.Consider a strategic interaction played between two ptayenere player
1 is randomly picked from a population and player 2 is rangopitked from another population.
For example, the situation could be a bargaining game betadeiyer and a seller. Now imagine
that this situation is repeated over time, each iterationgoglayed between two randomly selected
players. If this process settles down to an action profil, ithif time after time the action choices
of players in the role of player 1 and those in the role of pie/@are always the same, then we
may regard this outcome as a convention. Even if players witr arbitrary actions, as long as
they remember how the actions of the previous players fardle past and choose those actions
that are better, any social convention must correspond tash Mquilibrium. If an outcome is not
a Nash equilibrium, then at least one of the players is ndt fesponding, and sooner or later a
player in that role will happen to land on a better action \whigll then be adopted by the players
afterwards. Put differently, an outcome which is not a Naghildrium lacks a certain sense of
stability, and thus if a convention were to develop about how to plawarggame through time,
we would expect this convention to correspond to a Nashiequin of the game.

Focal Points Focal points are outcomes which are distinguished fronerstion the basis
of some characteristics. Those characteristics may digsh an outcome as a result of some
psychological or social process and may even seem triviah as the names of the actions. Focal
points may also arise due to the optimality of the actiond,dash equilibrium is considered focal
on this basis.

Learned Behavior. Consider two players playing the same game repeatedlp. shispose that
each player simply best responds to the action choice ofttier player in the previous interaction.
It is not hard to imagine that over time their play may settiean outcome. If this happens, then it
has to be a Nash equilibrium outcome. There are, howevemptaldems with this interpretation:
(1) the play may never settle down, (2) the repeated gaméésatit from the strategic form game
that is played in each period and hence it cannot be usedtify jiis equilibrium.

So, whichever of the above parables one may want to enteitaimeasonable outcome of a
game in strategic form exists, it must possess the propéfbgiog a Nash equilibrium. In other
words, being a Nash equilibrium isreecessarycondition for a reasonable outcom®ut notice
that this is a one-way statement; it would not be reasonabtéatm thatany Nash equilibrium of
a given game corresponds to an outcome that is likely to berebd when the game is actually
played. (More on this shortly.)

We will now introduce two other celebrated strategic forrmga to further illustrate the Nash
equilibrium concept.
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Example 3.5(Stag Hunt (SH)) Two hungry hunters go to the woods with the aim of catching a
stag, or at least a hare. They can catch a stag only if bothinestert and devote their time and
energy to catching it. Catching a hare is less demanding aad dot require the cooperation of
the other hunter. Each hunter prefers half a stag to a haténg. & denote the action of going after
the stag, and H the action of catching a hare, we can représsmgiame by the following bimatrix

S H
S(2201|
H|10| 11

One can easily verify thati(SH) = {(S,9, (H,H)}.

Example 3.6(Hawk-Dove (HD)) Two animals are fighting over a prey. The prey is wortto
each player, and the cost of fightingcisfor the first animal (player 1) ancifor the second animal
(player 2). If they both act aggressively (hawkish) and géb ia fight, they share the prey but
suffer the cost of fighting. If both act peacefully (dovisti)en they get to share the prey without
incurring any cost. If one acts dovish and the other hawkfgdre is no fight and the latter gets the
whole prey.

(1) Write down the strategic form of this game

(2) Assumey, ¢y, C; are all non-negative and find the Nash equilibria of this ganeach of the
following cases: (a§1 > v/2, ¢, > Vv/2, (b) c1 > Vv/2, c; <V/2,(C) 1 < V/2,Cr < V/2.

Example 3.7(Cournot Duopoly) We have previously introduced a simple Cournot duopoly rhode
and analyzed its outcome by applying IESD actions. Let ustngto find its Nash equilibria. We
will first find the best response correspondence of firm 1. &ihat firm 2 produce®; € [0,a/b],

the best response of firm 1 is found by solving the first ordedimn

dLI]_

a0 (a—c)—2bQ1 —bQ,

which yieldsQ; = &5 — % (Second order condition checks sin%zg,@l = —2b < 0.) But notice
1

that this equation yield®; < 0 if Q, > &£ while producing a negative quantity is not feasible for
firm 1. Consequently, we have

oD if Qp < B

_ 2 2>"p>
B1(Q2) = _ ac
0, if Q> o -

and, by symmetry,
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Figure 3.1: Cournot Duopoly

Nash Equilibrium

i
o
i
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_c—b . _
e b IleSa_bCa

0, if Q1>a%C.

Observe next that it is impossible that either firm will cheds produce more tha®< in the
equilibrium (why?). Therefore, by Proposition B, to comgthie Nash equilibrium all we need to
do is to solve the following two equations:

_a-c Q a—c Q5

Q=757 ad Qq=7--7"

Doing this, we find that the unique Nash equilibrium of thisngais

« ~_ (@—Ca-—c
(leQZ)_< 3b ) 3b >
(See Figure 3.1) Interestingly, this is precisely the onlicome that survives the IESD actions. (Is
this a strict Nash equilibrium?)

An interesting question to ask at this point is if in the Catrmodel it is inefficient for these
firms to produce their Nash equilibrium levels of output. Tdreswer is yes, showing that the
inefficiency of decentralized behavior may surface in meaistic settings than the scenario of
the prisoners’ dilemma suggests. To prove this, let us titethe possibility that firms 1 and 2
collude (perhaps forming a cartel) and act as a monopolisttwé proviso that the profits earned in
this monopoly will be distributed equally among the firmsve&i the market demand, the objective
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function of the monopolist is

U(Q) = (a—c—-bQQ

whereQ = Q1+ Q2 € [0,2a/b]. By using calculus, we find that the optimal level of produatfor
this monopoly iQ = Z;¢. (Since the cost functions of the individual firms are ideati¢t does not
really matter how much of this production takes place in vehplaint.) Consequently,

profits of the monopolist 1 a—c_b a—c ) a—c _(a_c)Z
2 2 2b 2b ) 8b

while
(a—c)?

9%

Thus, while both parties could be strictly better off hadytf@med a cartel, the equilibrium pre-
dicts that this will not take place in actuality. (Do you tkithis insight generalizes to thefirm
case?).

profits of firmi in the equilibrium= u;(Q7,Q5) =

Remark3.2 There is reason to expect that symmetric outcomes will rigditag in symmetric
games since in such games all agents are identical to oneesin@onsequently, symmetric equi-
libria of symmetric games is of particular interest. Foryale define asymmetric equilibriunof

a symmetric game as a Nash equilibrium of this game in whichlayers play the same action.
(Note that this concept does not apply to asymmetric gankes.)nstance, in the Cournot duopoly
game aboveQ;, Q5) corresponds to a symmetric equilibrium. More generéithe Nash equilib-
rium of a symmetric game is unique, then this equilibriumtrbasymmetriclndeed, suppose that
G is a symmetric 2-person game in strategic form with a unigpelierium and(a;,a5) € N(G).
But then using the symmetry & one may show easily théh},a;) is a Nash equilibrium oG as
well. Since there is only one equilibrium &, we must then hava; = a;.

Nash equilibrium requires that no individual has an incentd deviate from it. In other words,
it is possible that at a Nash equilibrium a player may be fadét between her equilibrium action
and some other action, given the other players’ actions. elfde not allow this to happen, we
arrive at the notion of atrict Nash equilibrium More formally, an action profil@* is a strict Nash
equilibrium if

u(a,a";) > u(g,a";) forallg €A suchthag # &

holds for each player

For example, both Nash equilibria are strict in Stag-Hum@avhereas the unique equilibrium
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of the following game, (M,R), is not strict

L R
T|-10]0-1
M| 01 | 01 |

B|1-1]-10

3.4 Nash Equilibrium and Dominant/Dominated Actions

Now that we have seen all the minor equilibrium concepts fnegs in strategic form, we
should analyze the relations between these concepts. Weotstch an analysis in this section.
It follows readily from the definitions that every stricthyoohinant strategy equilibrium is a
weakly dominant strategy equilibrium, and every weakly dwmt strategy equilibrium is a Nash
equilibrium. Thus,
D3(G) C D"(G) C N(G)

for all strategic game&. For instance(C,C) is a Nash equilibrium for Prisoners’ Dilemma; in fact
this is the only Nash equilibrium of this game (do you agree?)

Exercise. Show that if all players have a strictly dominant strategw istrategic game, then
this game must have a unique Nash equilibrium.

However, there may exist a Nash equilibrium of a game whichosa weakly or strictly
dominant strategy equilibrium; the BoS provides an exarplbis effect. What is more interesting
is that a player may play a weakly dominated action in Naslilibgum. Here is an example:

a B
al00]1,0 (3.1)
Bl01]33

Here(a,a) is a Nash equilibrium, but playin@weakly dominates playing for both players. This
observation can be stated in an alternative way:

Proposition 3.3. A Nash equilibrium need not survive the IEWD actions.

Yet the following result shows that if IEWD actions someholgs a unique outcome, then
this must be a Nash equilibrium in finite strategic games.

Proposition 3.4. Let G be a game in strategic form with finite action spaceshdfiterated elimi-
nation of weakly dominated actions results in a unique auicthen this outcome must be a Nash
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equilibrium of G*

Proof. For simplicity, we provide the proof for the 2-person casd, ibis possible to generalize
the argument in a straightforward way. Let the only actidregd survive the IEWD actions s
andaj, but to derive a contradiction, suppose tt@t, a5) ¢ N(G). Then, one of the players must
not be best-responding to the other, say this player is thiedire. Formally, we have

ui(aj,a5) < uy(aj,a5) for somea) € A;. (3.2)

But & must have been weakly dominated by some other acifoa A; at some stage of the
elimination process, so

ui(aj,a) <uy(af,ap) for eacha, € A; not yet eliminated at that stage.
Sincea; is never eliminated (by hypothesis), we then have
uy (2, a3) < us (8], a5).

Now if & = &}, then we contradict (3.2). Otherwise, we continue as we diet €8.2) to obtain
an actiona;’ ¢ {a},a]} such thauy (a},a5) < ui(a]’,a}). If & = a; we are done again, otherwise
we continue this way and eventually reach the desired atdiotian sinceA; is a finite set by
hypothesis.

O

However, even if IEWD actions results in a unique outcomerdhmay be Nash equilibrium
which does not survive IEWD actions (The game given) (llustrates this point). Furthermore,
it is important that IEWD actions leads to a unique outcometlie@ proposition to hold. For
example in the BoS game all outcomes survive IEWD actions,the only Nash equilibrium
outcomes are (m,m) and (0,0). One can also, by trivially fiyadj the proof given above show that
if IESD actions results in a unique outcome, then that outcomst be a Nash equilibrium. In other
words, any finite and dominance solvable game has a unique édaslibrium. But how about the
converse of this? Is it the case that a Nash equilibrium awsayvives the IESD actions. In contrast
to the case with IEWD actions (recall Proposition C), theagrss given in the affirmative by our
next result.

Proposition 3.5. Let G be a 2-person game in strategic form(df,a;) € N(G), then g and &
must survive the iterated elimination of strictly domirtheetions.

43S0, for instance(1, ..., 1) must be a Nash equilibrium of guess-the average game:
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Proof. We again give the proof in the 2-person case for simplicity obtain a contradiction,
suppose thataj,a;) € N(G), but eithera;j or a; is eliminated at some iteration. Without loss of
generality, assume thaj is eliminated befor@}. Then, there must exist an actiah < A; (not yet
eliminated at the iteration at whidj is eliminated) such that,

ui(aj,a) < uy(aj,a) for eacha, € Ay not yet eliminated.
But a; is not yet eliminated, and thus
Uy (a1, 85) < u(ay,a5)

so that(a;,a5) cannot be a Nash equilibrium, a contradiction.

3.5 Difficulties with Nash Equilibrium

Given that the Nash equilibrium is the most widely used dguiilm concept in economic
applications, it is important to understand its limitasonWe discuss some of these as the final
order of business in this chapter.

3.5.1 A Nash equilibrium may involve a weakly dominated acti on by some players.

We observed this possibility in Proposition C. Ask yoursélfa,a) in the game ??) is a
sensible outcome at all. You may say that if player 1 is “¢ettdnat player 2 will playa and vice
versa, then it is. But if either one of the players assignobatility in her mind that her opponent
may playf3, the expected utility maximizing (rational) action would tzeplay 3, no matter how
small this probability is. Since it is rare that all players are “certain” about thenidied plays
of their opponents (even if pre-play negotiation is posyiblveakly dominated Nash equilibrium
appears unreasonable. This leads ugfimethe Nash equilibrium in the following manner.

Definition. An undominated Nash equilibrium of a gameG in strategic form is defined as
any Nash equilibriun{aj, ..., &) such that none of the's is a weakly dominated action. The set
of all undominated Nash equilibria & is denotedNyngom(G).

Example. If G denotes the game given ifi%), thenNyndom(G) = {(B,B)}. On the other hand,
Nundom(G) = N(G) whereG = PD, BoS, CG. The same equality holds for the linear Cournot
model. Question Are all strict Nash equilibria of a game in strategic forrmdominated?)
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Exercise. Compute the set of all Nash and undominated Nash equilifrtaeochairman’s
paradox game.

(2) Nash equilibrium need not exist.

For instanceN(MW) = 0. Thus the notion of Nash equilibrium does not help us prediet h
the MW game would be played in practice. However, it is pdedib circumvent this problem to
some extent by enlarging the set of actions available toltyeps by allowing them to “randomize”
among their actions. This leads us to the notion ofiged strategyvhich we shall talk about later
in the course.

(3) Nash equilibrium need not be unique.

The BoS and CG provide two examples to this effect. This imakiing issue in that multi-
plicity of equilibria avoids making a sharp prediction wittkgard to the actual play of the game.
(What do you think will be the outcome of BoS?) However, sames preplay negotiation and/or
conventions may provide a way out of this problem.

Preplay Negotiation. Consider the CG game and allow the players to communicatafch
talk) prior to the game being played. What do you think willthe outcome then? Most people
answer this question dsr). The reason is that agreement on the outcome (r,r) seems ivatbre
of things, and what is more, there is no reason why playerslghmt play r once this agreement
is reached (i.e. such an agreemengatf-enforcing. Thus, pure coordination games like CG can
often be “solved” via preplay negotiation. (More on this ko)

But how about BoS? It is not at all obvious which agreementld/@urface in the preplay
communication in this game, and hence, even if an agreenmeeittver (m,m) or (0,0) would be
self-enforcing, preplay negotiation does not help us ‘sbthe BoS. Maybe we should learn to
live with the fact that some games do not admit a natural tsmid

Focal Points.It has been argued by many game theorists that the story af games isolate
certain Nash equilibria as “focal” in that certain detaliattare not captured by the formalism of a
game in strategic form may actually entail a clear path of.plde following will illustrate.

Example. (A Nash Demand Gamé&uppose that two individuals (1 and 2) face the problem
of dividing $100 among themselves. They decide to use thewolg method in doing this: each
of them will simultaneously declare how much of the $100 €s)hishes to have, and if their total
demand exceeds $100 no one will get anything (the money keh tgo to a charity) while they
will receive their demands otherwise (anything left on tiale will go to a charity).
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We may formulate this scenario as a 2-person game in steeftagn whereA; = [0,100 and

Xi, If Xg+x <100
0, otherwise.

Ui (X1, %2) = {

Notice that we are assuming here that money is utility; amragsion which is often useful.
(Caveat But this is not an unexceptionable assumption - what if theghining was between a
father and his 5 year old daughter or between two individudis hate each other?).

» Play the game.

« Verify that the set of Nash equilibria of this game is
{(x1,%2) € [0,100? : X1 + Xo = 100}.

» Well, there are just too many equilibria here; any divisar$100 is an equilibrium! Thus,
for this game, the predictions made on the basis of the Naghilegm are bound to be very
weak. Yet, when people actually played this game in the éxats, in an overwhelming
number of times the outcom&0,50) is observed to surface. So, in this example, 50-50 split
appears to be a focal point suggesting gguityconsiderations (which are totally missed by
the formalism of the game theory we have developed so far)ptagya role in certain Nash
equilibrium to be selected in actual play.

Unfortunately, the notion of a focal point is an elusive ofiieis difficult to come up with a
theory for it since it is not clear what is the general priteighat underlies it. The above example
provides, after all, only a single instance of it; one cankhof other scenarios with a focal equi-
librium.> It is our hope that experimental game theory (which we sh#ftlabout further later on)
will shed light into the matter in the future.

(4) Nash equilibrium is not immune to coalitional deviatiors.

Consider again the CG game in which we argued that preplagtiagign would eliminate the
Nash equilibrium (1,1). The idea is that the players pantly deviate from the outcome (1,1)

SHere is another game in strategic form with some sort of alfpcmt. Two players are supposed to partition the
letters A,B,C,D,E,F,G,H with the proviso that player 1t lmust contain A and player 2’s list must contain H. If their
lists do not overlap, then they both win, they lose otherw{gtow would you play this game in the place of player 1?
Player 2?) What happens very often when the game is playér ieperiments is that people in the position of player
1 chooseqA,B,C,D} and people in the position of player 2 choo$&sF,G,H; what is going on here, how do people
coordinate so well? For more examples of this sort and a tlybraliscussion of focal points, an excellent reference is
T. Schelling (1960)The Strategy of Conflictondon: Oxford University Press.
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through communication that takes place prior to play), totha Nash equilibrium outcome (r,r)
they are both strictly better off. This suggests the follogviefinement of the Nash equilibrium.

Definition. A Pareto optimal Nash equilibrium of a gameG in strategic form is any Nash
equilibriuma* = (aj, ...,&;) such that there does not exist another equilibriim= (bj, ...,b},) €
N(G) with

ui(a") < ui(b*) foreachi € N.

We denote the set of all Pareto optimal Nash equilibriur® dly Npo(G).

A Pareto optimal Nash equilibrium outcome in a 2-person gars&ategic form is particularly
appealing (when preplay communication is allowed), foreosiech an outcome has been somehow
realized, the players would not have an incentive from digafrom it neither unilaterally (as
the Nash property requires) nor jointly (as Pareto optitpatquires). As you would expect, this
refinement of Nash equilibrium delivers us what we wish to finthe CG:Npo(CG) = {(r,r)}. As
you might expect, however, the Pareto optimal Nash eqilibiconcept does not help us “solve”
the BoS, for we havélpo(BoS) = N(BoS).

The fact that Pareto optimal Nash equilibrium refines thehNailibrium points to the fact
that the latter is not immune tooalitional deviations This is because the stability achieved by
the Nash equilibrium is by means of avoiding only the uniateleviations of each individual.
Put differently, the Nash equilibrium does not ensure thatcaalition of the players will find
it beneficial to defect. The Pareto optimal Nash equilibrisomewhat corrects for this through
avoiding defection of the entire group of the players (thealted grand coalition) in addition to
that of the individuals (the singleton coalitions). Unfarately, this refinement does not solve the
problem entirely. Here is a game in which the Pareto optinsghNequilibrium doerot refine the
Nash equilibrium in a way that deals with coalitional comsations in a satisfactory way.

Example. In the following gameG player 1 chooses rows, player 2 chooses columns and
player 3 chooses tables.

al| 1,1,-5 | -5,-5,0 |if player 3 chooses U
b|-5-50| 02,7

al| 1,1,6 | -5,-5,0 |if player 3 chooses D
b|-5,-50]-2,-2,0
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(For instance, we havd = {1,2,3}, A = {U,D} anduz(af3,D) = 0.) In this game we have

NPO(G) = {(b’BaU)’ (a,G,D)} = N(G)a

but coalitional considerations indicate that the equillitor (a, a,D) is rather unstable, provided that
players can communicate prior to play. Indeed, it is quitecedvable in this case that players 2
and 3 would form a coalition and deviate frofa a,D) equilibrium by publicly agreeing to take
actionsf3 and U, respectively. Since this is clearly a self-enforaggeement, it casts doubt on the
claim that(a,a,D) is a reasonable prediction for this gante.

You probably see where the above example is leading to. gesighat there is merit in refin-
ing even the Pareto optimal Nash equilibrium by isolatingsthNash equilibria that are immune
againstall possible coalitional deviations. To introduce this idearfally, we need a final bit of

Notation. Let A= xjcnAi be the outcome space of arperson game in strategic form, and
let (a,...,a,) € A. For eachK C N, we letax denote the vectofa )ick € XjckAi, anda_ the
vector (& )ien\k € Xien\kAi- BY (a,a k), we then mean the outcontey, ..., an). Clearly, ax is
the profile of actions taken by all players who belong to theliton K, and we denote the set
of all such profiles byA¢ (that is, Ak = XijexAi by definition). Similarly,a_g is the profile of
actions taken by all players who does not belont@ndA_g is a shorthand notation for the set

Ak = XienkAI-

Definition. A Strong Nash equilibrium of a gameG in strategic form is any outcoma =
(a;,...,a,) such that, for all nonempty coalitiof6C N and allax € Ak, there exists a playerc K
such that

Ui (B, a0 1) > (. ).

We denote the set of all strong Nash equilibriunGolby Ns(G).®

While its formal definition is a bit mouthful, all that the strg Nash equilibrium concept does
is to choose those outcomes at which no coalition can findtitérinterest obachof its members
to deviate. Clearly, we have

Ns(G) € Npo(G) € N(G)

fort any gameG in strategic form. Since, for 2-person games the notionsanéte® optimal and
strong Nash equilibrium coincide (why?), the only strongshaquilibrium of the CG igr,r). On

6The notion of the strong Nash equilibrium was first introdibg the mathematician and economist Robert Aumann.
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the other hand, in the 3-person game discussed above, weNg&se = {(b,3,U)} as is desired
(verify").

Unfortunately, while the notion of the strong Nash equilibr solves some of our problems, it
is itself not free of difficulties. In particular, in many eresting games no strong Nash equilibrium
exists, for it is simply too demanding to disallow fall coalitional deviations. What we need
instead is a theory of coalition formation so that we can limokhe Nash equilibria that are immune
to deviations by those coalitions that are likely to form. phktsent, however, there does not exist
such a theory that is commonly used in game theory, the issaigsamuch further research.

7If you are interested in coalitional refinements of the Naghilibrium, a good place to start is the highly readable
paper by D. Bernheim, B. Peleg and M. Whinston (1987), “Gumadiproof Nash equilibria I: ConceptsJournal of
Economic Theory42, pp. 1-12.
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Chapter 4

Strategic Form Games: Applications

In this section, we shall consider several economic scesarhich are modeled well by means
of strategic games. We shall also examine the predicticaisgdame theory provides in such sce-
narios by using some of the equilibrium concepts that we Bawdied so far. One major objective
of this section is actually to establish a solid understagdif the notion of Nash equilibrium, un-
doubtedly the most commonly used equilibrium concept ing#meory. We contend that the best
way of understanding the pros and cons of Nash equilibriugeéing this concept in action. For
this reason we shall consider below quite a number of examplost of these examples are the
toy versions of more general economic models and we shatiréd some of them in later chapters
when we are better equipped to cover more realistic scenario

Auctions

Many economic transactions are conducted through aucti®ogernments sell treasury bills,
foreign exchange, mineral rights, and more recently aieangpectrum rights via auctions. Art
work, antiques, cars, and houses are also sold by auctiardiof theory has also been applied to
areas as diverse as queues, wars of attrition, and lobbgimgsts:

There are four commonly used and studied forms of auctidresascending-bid auction (also
called English auction), the descending-bid auction (a@isted Dutch auction), the first-price
sealed bid auction, and the second-price sealed bid augtism known as Vickrey auctiéh In
the ascending-bid auctigrthe price is raised until only one bidder remains, and tigddy wins
the object at the final price. In tliescending-bid auctighe auctioneer starts at a very high price
and lowers it continuously until the someone accepts theently announced price. That bidder

1For a good introductory survey to the auction theory see Rimhperer (1999), “Auction Theory: A Guide to the
Literature,”Journal of Economic Survey$3(3), July 1999, pp. 227-286.
2Named after William Vickrey of Columbia University who wasarded the Nobel Prize in economics in 1996.
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wins the object at that price. In tHigst-price sealed bid auctiopach bidder submits her bid in a
sealed envelope without seeing others’ bids, and the olsjscid to the highest bidder at her bid.
The second-price sealed bid auctiavorks the same way except that the winner pays the second
highest bid.

In this section we will analyze the last two forms of auctiomst only because they are simpler
to analyze but also because under the assumptions we whlwith in this section the first-price
sealed bid auction is strategically equivalent to deseenhid auction and the second-price sealed
bid auction is strategically equivalent to ascending bictian.

For simplicity we will assume there are only two individugttayers 1 and 2, who are compet-
ing in an auction for a valuable object. While this may regurstretch of imagination, it is com-
monly known that the value of the object to the player v, dollars,i = 1,2, wherev; > v, > 0.
(What we mean by this is that playkeis indifferent between buying the object at prigeand not
buying it.) The outcome of the auction, of course, dependtenules of the auctioning procedure.
In fact, identifying the precise nature of the outcomes iatéirgy like this (and in similar scenarios)
under various procedures is the subject matter of a verlyliabfield of game theory, namely the
auction theory. In this section, our aim is to provide an @grtary introduction to this topic. let
us then begin with analyzing this game theoretic scenagbdinder the most common auctioning
procedure.

First-price sealed bid auction

The rules of the first-price auction is such that after bo#tygis cast their bid (without observ-
ing each others’ bid), the highest bidder wins the objectayg her own bid. In case of a tie, the
object is awarded to playerql.

Assuming that utility is money (i.e., individuals are riskutral), this bargaining procedure
results in the 2-person game in strategic fadme= (A1, Az, U1, Up) WhereA; = A = R,

vi—by, ifbp>b
ui(bg,by) =
1(b1, b2) { 0, otherwise
and
Vo—hy, ifby>b;
ux(by,by) = .
2(b1, b2) { 0, otherwise

for all (by,by) € R2. (Hereb; stands for the bid of playéri = 1,2).
We now wish to identify the set of Nash equilibria®f (In case you are wondering why we are

3There are other tie-breaking methods such as, randomigtsrjen winner (by means of coin toss, say). Our choice
of the tie-breaking rule is useful in that it leads to a simgm@lysis. The reader should not find it difficult to modify the
results reported below by using other tie-breaking rules.
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not checking for dominant strategy equilibrium, note theg following analysis will demonstrate
thatD3(G) = DY(G) = 0.) Rather than computing the best response correspondefitesplayers,
we adopt here instead a direct approach towards this goalistiey to find what properties a Nash
equilibrium has to satisfy. We first claim that

(1) In any Nash equilibrium player 1 (the individual who valube pbject the most) wins the
object.

Proof: Let (b;,b5) be a Nash equilibrium, but for a contradiction, supposegaidydoes not win
the object. This implies thd; < b} and player 1's payoff in equilibrium is zero, i.e;(b;,b5) = 0.
Now if b5 < v», thenb < vy (sincev, < vy), and hence bidding, sdoj, is a strictly better response
for player 1 when player 2 is bidding;. Therefore, bidding a strictly smaller amount thia
cannot be a best response for player 1. If, on the other Hgnel,v», thenuy(bj,b%) < 0 so that
bidding anything in the intervdD, b;] is a profitable deviation for player 2. In either case, thea, w
obtain a contradiction to the hypothesis tfigit, b3) is an equilibrium. Therefore, we conclude that
in any equilibrium(b;,b5) of G player 1 obtains the object, that ks, > b.

Secondly,

(2) by > b cannot hold in equilibrium, for in this case player 1 wouldidée by bidding, say,
b5 and increase her payoff from — b; to v; — b5. Together with our finding thab; > b5, this
implies thatb; = b5 must hold in equilibrium.

Thirdly,

(3) Neitherb; < v» norb; > v4 can hold (player 2 would have a profitable deviation in the firs
case, and player 1 in the second case).

So, any Nash equilibriunfb;, b5) of this game must satisfy

vng*:bﬁgvl.

Is any pair(bj,b5) that satisfy these inequalities an equilibrium? Yes. Thegimlity v < b}
guarantees that player 2 does not wish to win the object wherepl bidsb,, so his action is
optimal. The inequalityh; < vi, on the other hand, guarantees that player 1 is also bestdisgo
We thus conclude that

N(G) = {(b1,b2) :vo <b; =by <w;}

Exercise. Verify the above conclusion by means of computing the begtiaese correspon-
dences of the players 1 and 2, and plotting their graph irflthds,) space.

While N(G) is rather a large set and hence does not lead us to a sharptjmrediefining this
set by eliminating the weakly dominated actions solves gthidblem. Indeed, it is easily verified
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that bidding anything strictly higher thag is a weakly dominated action for player 2. To see this,
suppose player 2 bids, which is strictly higher tham,. Now, if player 1's bidb; is greater than
equal toby, then player 1 wins the object and player 2's payofbfcand to bidding her valuation

v, are both zero. If, however, player 1's bid is strictly smatleanb), but greater than or equal

to vp,then player 2 wins by biddint), but obtains a negative payoff since she pays more than her
valuation. The payoff to bidding,, on the other hand, is zero. Similarly, bidding is strictly
better than biddindyp, if player 1's bid is strictly smaller tham,. The following table summarizes
this discussion. (Does bidding weakly dominate bids less tham as well?).

ble,z V2§b1<b/2 by <w
v, O 0 0
b/2 0 V2—b/2<0 V2—b/2<0

Consequently, we have
Nundom(G) = {(v2,V2) }.

Now, there is an intriguing normative problem with this ddmium: the first player is not
bidding his true valuation. It is often argued that it woulgl dbesirable to design an auctioning
method in which all players are induced to bid their true atitins in equilibrium. But is such a
thing possible? This question was answered in the affirmditjvthe economist William Vickrey
who has showed that truth-telling can be established evendasninant action by modifying the
rules of the auction suitably. Let us carefully examine Yagks modification.

Second-price sealed bid (Vickrey) auction

The rules of the second-price auction is such that after ptathers cast their bid (without
observing each others’ bid), the highest bidder wins thecilgnd pays the bid of the other player.
In case of a tie, the object is awarded to player 1.

Assuming that utility is money, this bargaining procedwgsuits in the 2-person game in strate-
gic form G’ = (A1, Az, Uz, Up) whereA; = A =R,

vi—bp, ifby>hy
ui(by,by) =
1(b1, b2) { 0, otherwise
and
vo—by, ifby>b;
Uz(by,by) =
2(b1, b2) { 0, otherwise

for all (by,bp) € R2. (ContrastG’ with the gameG we studied above.)
We now claim thaD%¥(G') = {(v1,Vv2) }. To see that biddindp; = v; is a dominant action for
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player 1, we distinguish between two cases:

Case 1Player 2 bids strictly less than (that is,by < vi)

In this case, by bidding; player 1 wins the object and achieves a utility levelrpf- b, > 0.
Bidding strictly less thamw; either makes her win the object @ < by < v1) with payoffv; — by,
or she looses the object (@ < b, < v1) with payoff zero. So, bidding; is at least as good as
bidding strictly greater thaw, and sometimes it is strictly better. Bidding strictly geyathanvy,
on the other hand, brings player 1 a payoffwf- b, > 0, the same payoff as she would get by
biddingv;.

Case 2Player 2 bids/; (that is,by = v1)

In this case, every bid brings player 1 a payoff of zero.

Case 3Player 2 bids strictly more than (that is,b, > v1)

In this case, player 1 loses the object and obtains utilitg@biddingv, is again optimal for
player 1 since winning the object in this case would entajlatiee utility for him.

Consequently, bidding; is a dominant action for player 1. A similar reasoning shokat t
bidding v, is a dominant action for player 2, and hence we ha¥/éG’) = {(v1,v2)} as is sought.
We hope you agree that this is a very nice result. Since, alwedakninant strategy equilibrium is
also a Nash equilibrium, we also have tl\at, v») is a Nash equilibrium. However, there are other
Nash equilibria of this game. For exampig,0) is a Nash equilibrium too (verify).

Exercise. Generalize the above analysis by consideririg 2 many individuals assuming that
the value of the object to playeis v; dollars,i = 1,...,n, wherevy > - -- > v, that the object is
given to the highest bidder with the smallest index in bothfttst and second-price auctions, and
that the winner pays the second highest bid in the secord-priction.

By an ingenious modification of the first-price auction, #fere, Vickrey was able to guarantee
the truthful revelation of the preferences of the agentsamidant strategy equilibrium. This
result shows that, by designing the rules of interactiorfcdly, one may force the individuals to
coordinate on normatively appealing outcomes, and this exthout knowing the true valuations
of the individuals! Vickrey's technique provides a fouridatfor the theory of implementation
which has important applications in public economics whmare frequently needs to put on the
mask of asocial engineeringWe shall talk about some of these applications later on.
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Buyer-Seller Games

A seller,call him playes, is in possession of an object that is wovthdollars to him (that is,
playersis indifferent between receiving dollars for the object and keeping the object). The value
of this object isv, dollars to a potential buyer, playbrWe assume in what follows that

So, since the value of the object is higher for the buyer thanfor the seller, an efficient state of
affairs demand that trade takes place. But what is the phiaepiayerb will pay to players? The
buyer wants to pay onlys (well, she wants to pay nothing, but she knows that the sefiénot
sell the object at a price strictly less thay) while the seller wants to chargg. The actual price
of the object will thus be determined through the bargairohthe players. Different bargaining
scenarios would presumably lead to different equilibriuritgs. To demonstrate this, we shall
consider here two such scenarfos.

Bargaining Scenario 1Sealed-bid first-price auction

Each party proposes a price betwegandv, simultaneously (by means of a sealed bid). If the
price suggested by the buypy is strictly higherthan that proposed by the seller, gaythen trade
takes place at pricpp, otherwise there is no trade. Assuming that utility is morleig bargaining
procedure results in the 2-person game in strategic féumAs, up, Us) whereA, = Ag = [Vs, V],

Vb — Po, if P> Ps
0, otherwise

Un(Po, Ps) = {

and

Po—Vs, if pp> Ps
u b — .
s(Po, Ps) { 0, otherwise

for all (pp, Ps) € [Vs, V)2

We first observe that there is no Nash equilibri(ig), p$) in which the buyeb buys the object.
Indeed, ifp;; > p§, then bidding anything betweesi and p;; (e.9. p;;/2+ ps/2) would be a strictly
better response for playbr(than playingp;) againstpg.

Exercise. Consider the game described above. Show that the best sesporrespondence of

41t is very likely that these scenarios will strike you as waligtic. The objective of these examples is, however, not
achieving a satisfactory level of realism, but rather tasitate the use of Nash equilibrium in certain simple bugier
games. In later chapters, we will return to this setting asrtser much more realistic bargaining scenarios thatwevo
sequential offers and counteroffers by the players.
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playersb ands are given as

By(pe) = 0, if ps € [Vs,Vp)
° Vs, Vo], if ps=Wp

and
Vs, Po], if pp € (Vg
Bs(pb) _ [ S pb] : Po ( S b]
Vs, Vo], if pp="Vs

respectively. Deduce from this that the only equilibriuntte# game i pg, p5) = (Vs, Vo).

Bargaining Scenario 2Modified sealed-bid first-price auction

Each party proposes a price betwegrandv, simultaneously (by means of a sealed bid). If
the price suggested by the buymyis at least as large athat proposed by the seller, say, then
trade takes place at prigm,, otherwise there is no trade. Assuming again that utility ey,
this bargaining procedure results in the 2-person gameatesjic form(Ay, As, Up, Us) whereA, =

AS = [VS’Vb]v
Vo—Pb, if Pp>ps
u ,Ps) = .
b((Po: Ps) { 0, otherwise
and
Po—Vs, if Po>Ps
Us(Pb, Ps) = .
s(Po, Ps) { 0, otherwise

for all (pp, ps) € [vs, Vb]*.
If you have solved the exercise above, you will find it easyhkovwsthat we have

Bo(ps) = {ps}, if Ps € [Vs, W)
"I vewl, i ps= o

and
[Vs, Po, if Po € (Vs, V]
[VSaVb]a if Pp="Vs

Bs(pb) = {

in this game. Consequentlyp;, ps) € Bo(ps) x Bs(p) holds if, and only if, either(p;, ps) =
(Vs,Vb) (the no-trade equilibrium) opy, = p € [Vs, Vo] (See Figure 2).

Therefore, with a minor modification of the bargaining prbwe, one is able to generate many
equilibria in which trade occurs. (This is an important akiagon for especially the seller, for,
in many instances, it is the seller who design the bargaipmogedure.) However, the prediction
of the Nash equilibrium in the resulting game is less thaisfsatory due to the large multiplic-
ity of equilibria. (Check if undominated and/or Pareto ol Nash equilibria provide sharper
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predictions here.)
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Price Competition Models

Game theory has many applications in the field of industrighoization. We have already
encountered one such application when we have considersatrie detail the model of Cournot
duopoly in the previous chapter. Recall that in this scenadividual firms were modeled as com-
peting in the market by choosing their output levels. Howetdas been argued in the literature
that this model is not entirely satisfactory, especiallgrif is interested in the short-run decision
making of the firms. For, as the argument goes, in the sharfirms would find it too costly to
adjust their output level at will; it is rather through prisetting that they engage in competition
with other firms® To deal with this problem, several oligopoly models in whiithns choose their
prices (as opposed to quantities) were developed in thratiitee. We now briefly discuss such a
price competition model, which leads to a dramaticallyeti#t conclusion than does the Cournot
model..

Bertrand Duopoly with Homogeneous Products

Consider the market structure underlying the linear Caummadel, but this time assume that
the firms in the market engage in price competition, thathisy tthoose how much to charge for
their products. Recalling thatis the maximum price level in the market, we thus model thmact
space for firmi = 1,2 as|0, a]. The profit function of firm on [0, a]2 in this model (called thénear
Bertrand duopolyis defined as

Ui (P, P2) = RQi (P, P2) — cQi(Py, P2),

whereQ;(P1,P,) denotes the output sold by firimat the price profilgPy,P,). If we assume that
there is no qualitative difference between the productshefttvo firms, it would be natural to
assume that the consumers always buy the cheaper good elbathsfirms charge the same price,
we assume that firms 1 and 2 share the market equally. Thasagtisns entail that

T R <P
Q(PLP) =1 3(8-%), R=P
0, P >R

where j #i =12, and complete the formulation of the model at hand as a @spegame in
strategic form.

An immediate question to ask is if our prediction (based anMash equilibrium) about the
market outcome would be different in this model than in tinedir Cournot duopoly model. The

5The argument was first given by the French mathematiciarpboBertrand in 1883 as a critique of the Cournot
model.
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answer is easily seen to be yes. To see this, recall that iNdkk equilibrium of the linear Cournot
duopoly model both firms charge the same price, namely

a—c 2a C
Plzpzza‘b(¥>:§+§’

so that firm 1’s level of profits is found as
_ B _(2(a-c)\1l/a 1/2a c\) 1 2
Ui (P, P2) = (PL—€)Qu(P1,P2) = ( 3 )§<B_B<§+§>> =g @ 9"

But, given thatP, = 2—3‘;" + £, if firm 1 undercutsfirm 2 by charging a marginally smaller price
than2 + §, say 2 + £ — e wheree is some small positive number, then the profit level of firm 1
increases since this firm then grabs the entire market. thdieean easily be checked that

lim u; 2—a+9—s 2_a+9 —E(a—c)2>i(a—c)2—u- §+E@+E
&0 \3 '3 73 '3/ o 9b ~ '\ 3 "33 "3/

Thus, the Cournot prices cannot constitute an equilibriomttie linear Bertrand model. (How
did we conclude this, really?) The problem is that the tiealking rule of the Bertrand duopoly
introduces aiscontinuityto the model allowing firms to achieve relatively large gainsough
small alterations of their actiorfs.

What then is the equilibrium? The analysis outlined in thevimus paragraph actually brings
us quite close to answering this question. First observenttither firm would ever charge a price
below c as this would yield negative profits (which can always be @@diby charging exactlg
dollars for the unit product). Thus, if the price profilBj,P;) is a Nash equilibrium, we must
haveP;,P; > c. Is P; > P; > c possible? No, for in this case firm 1 would be making zero mofit
and thus it would better for it to charge, s&j, which will ensure positive profits given that firm
2’s price isP;. How aboutP; = P; > ¢? This is also impossible, because in this case either firm
can unilaterally increase its profits by undercutting theeofirm (just as in the discussion above)
contradicting thatP;, P;) is a Nash equilibrium. By symmetr?; > P > cis also impossible, and
hence we conclude that at least one firm must be chargingsphedis unit cost in the equilibrium.
Can we have® > P; = c then? No, for in this case firm 2 would not be best respondingan
increase its profits by charging, s&},/2+ c/2. Similarly, P; > P} = cis not possible. The only
candidate for equilibrium is thu&;,P;) = (c,c), and this is indeed an equilibrium as you can
easily check: in the Nash equilibrium of the linear Bertrapoly, all firms price their products

SNotice that this is the third time we are observing that thebtieaking rule is playing an important role with regard
to the nature of equilibrium. This is quite typical in manyeresting strategic games, and hence, it is always a goad ide
to inquire into the suitability of a specific tie-breakindein such models.
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at unit cost.

This is a surprising result since it envisages that all finpsrate with zero profits in the equi-
librium. In fact, the equilibrium outcome here is nothing e competitive equilibrium outcome
which is justified in microeconomics only by hypothesizingesty large number of firms who act
as price takers (not setters) in the industry. Here, howewepredict precisely the same outcome
in equilibrium with only two price setting firms!

Remark. The major culprit behind the above finding is the fundamedistontinuity that
the Bertrand game possesses. Indeed, as noted earliepassible in this game to alter one’s
action marginally (infinitesimally) and increase the agsecl profits significantly, given the other’s
action. Such games are calldidcontinuouggames, and often do not possess a Nash equilibrium.
For example, if we modify the linear Bertrand model so that timit cost of firm 1, call itcy,
exceeds that of firm 2, we obtain an asymmetric Bertrand ghatadbes not have an equilibrium.
(Exercise: Prove this.) But this is not a severe difficultyarises only because we take the prices
as continuous variables in the classic Bertrand model elftledium of exchange was discrete but
small, then there would exist an equilibrium of this gamehstinat the high cost firm 1 charges its
unit cost (and thus make zero profits) while the low cost firmduld grab the entire market by
charging the lowest possible price strictly below (Challenge Formalize and prove this claim.)
O
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Spatial Voting Games

The example of Chairman’s paradox was our first excursiamvating theory which provides
an extensive realm for fruitful applications of game thedmthis section we provide a more daring
excursion, and introduce the so-called spatial voting rhode

If we think of the policy space as one-dimensional, then weidantify the set of all political
positions with the closed intervél, 1]. Here we may think of 0 as the most leftist position and
1 as the most rightist position. The interpretation of artyeotpoint in[0,1] is then given in the
straightforward way. Let us assume next that each voter has an ideal position ipdlitical
spectrum, and evaluate every other policy{0nl] by looking at the distance between this point
and her ideal point. For instance, the voter with the idedhtpb/2 € [0,1] likes the point ¥4
better than 1More generally, an individual with ideal poirtin [0, 1] likes the pointy better than
ziff [x—y| < |x—12. Such preferences are callsohgle-peakedn the literature because, for any
x € [0,1], the mappingy — |x—Y] is strictly increasing or0,x] and strictly decreasing ofx, 1].
(Plot the graph of this mapping d@, 1] and see for yourself.)

We model the society as a continuum, and posit that the vétdrich can be identified with
their ideal positions in this model) are distributed unifity over [0,1]. Thus 1/2 corresponds to
themedianideal position in the society, that is, the ideal positiohgsxactly half of the society lie
to the left of 1/2.

The players in a voting game are the political candidatesantigs. We consider the case
in which there aren € {2,3} many candidates whose problem is to decide upon which ptdicy
propose (or, equivalently, which position to take in theitmal spectrum). Each citizen votes
for the candidate who has chosen the closest position todeat point (because she has single-
peaked preferences), and all this is known by the candid#éfesassume that the only goal of each
candidate is to win the electichOf course, to complete the specification of the model, we must
append to this setting a tie-breaking rule. We postulataigregard that candidates share equally
the votes that they attract together. Each candidate grédewnin the election to a tie for the first
place, and the tie for the first place to losing the electioosihg the election may or may not be
the worst outcome for a candidate, however, depending omhwher not running in the election

"The political spectrum is of course better modeled as beimkgjgimensional; for instance, in the national elections
voters not only care about the position of a candidate on da¢hhcare reform but also about his/her position on the
tax policy, education reform, social security, and so onowing for multidimensionality in voting models, however,
complicates matters to a considerable degree, and hencbassecto confine our attention here to the unidimensional
setting.

80nce again this is not the most realistic of assumptionsir&sance, it would certainly be reasonable to posit that
the candidates have policy preferences on their own, anceheare also about the policy that will be implemented in
equilibrium. However, vote maximization is certainly orfetfee major goals of politicians, and the above model (which
is sometimes called thBownsianmodel of political competition) is useful in identifying eéhimplictions of such an
objective about the pre-election behavior of the candgldtds by far the most standard in the literature.
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is costly. We take up each of these possibilities in turn.

Elections when running is not costly

Let us first consider the case where there are two politicadidates. In this case the game at
hand is a 2-person game with action spates- A, = [0, 1]. The utility function for candidatéis
given as

1, if i wins the election alone at the position profilg, /)
Ui(l1,02) = %, if there is a tie at the position profilé1, /)
0, if iloses the election at the position profilg, ¢»),

where/; denotes the policy chosen by candidate 1,2.

We wish to find the set of Nash equilibria of this voting gameather then computing the
best response correspondences of the players, we agaghlaudirect attack. (You are welcome
to verify the validity of the subsequent analysis by using ltlest response correspondences of the
candidates.) Suppose ttét, ¢,) is a Nash equilibrium. Consider first the possibility thatdidate
1 is winning the election at this position profile. Now notibat if /1 # 1/2, then candidate 2 can
force a win by choosing /2. This is because, in this case, she gets all the votes mnﬁ@;m—;/z]

(if £1>1/2) orin [fﬁzl/z,l] (if 1 < 1/2) which add up to more than the half of the total number
of votes. But then sincé is a best response of candidate 2 againsit must also guarantee a win
for her, contradicting that candidate 1 is the winner in theilrium outcome(¢;, ¢2). Therefore,
we must haveé; = 1/2. But this will not do either, because the best response ofidated2 against
¢1 =1/2 is to play ¥2 which forces a tie, contradicting again the hypothesis$ taadidate 1
was the winner of the election in equilibrium. Thus, cantidh cannot win the election alone in
equilibrium, and by symmetry, neither can candidate 2. Wis tkearn tha¥; = ¢, must be the
case, that is, the election is bound to end up in a tie in dayiutin. But it is easily checked that
we cannot havé; = ¢, # 1/2 in equilibrium (either party would then deviate to, say2l The
only possibility of equilibrium outcome in this game is thfis= ¢, = 1/2, and this is indeed an
equilibrium as you can easily verify. The conclusion is timathe unique equilibrium of the game
both parties choose the median positfon.

Life gets more complicated if a third candidate decides to floe race. In the 3-person game
that obtains in this case, the action spacesfare- A, = Az = [0,1] and the utility function for

91f you are careful, you will notice that the assumption ofefally distributed individuals did not really play a role
in arriving at this conclusion. If the distribution is givdry an arbitrary continuous density functidnon [0, 1] with
f(x) > 0, the equilibrium would have both parties to locate on the medif this distribution.
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candidatd is given as

1, if i wins the election alone at the position profilg, (2, (3)
Ui(l1,02,03) = %, if i there is a tie at the position profi(é;, (2, (3)
0, ifiloses the election at the position proffla, ¢, ¢3),

where/; denotes the policy chosen by candidate 1,2,3. The equilibrium of this game is not a
trivial extension of the previous game. Indeéd, ¢»,¢3) = (1/2,1/2,1/2) does not correspond to
a Nash equilibrium here. For, each candidate is gettingepiately the 33% of the total votes at
this profile, and by moving slightly to the left (or right) of 2 any of the candidates can increase
her share of the votes almost to 50%. None of the candidatasissplaying optimally given the
actions of others.

It turns out that there are many Nash equilibria of this 3pervoting game. As an exam-
ple let us verify that(¢1,¢>,¢3) = (1/4,1/4,3/4) is an equilibrium. Begin with observing that
candidate 3 wins the election alone at this position profilberefore, this candidate obviously
does not have any incentive to deviate frop gjiven that the other two candidates position them-
selves at 14. Does candidate 1 (hence candidate 2) has a profitable @m#atNo. Given that
(¢1,¢3) = (1/4,3/4), itis readily observed that if candidate 1 chooses instedd #fany position
in the interval[0,1/4], then candidate 3 remains as the winner, and if she deviasytposition
in the interval[3/4, 1], the candidate 2 becomes the winner alone. Less clear is fieation of
choosing a policy in the intervdll/4,3/4). The key observation here is that by doing so candidate
1 would attract the votes that belong[t +21/4, @‘} . Thus in this case candidate 1 would get ex-
actly the 25% of the total vote (see Figure 5.) But either @iatd 2 (34 > ¢; > 1/2) or candidate
3 (if1/2> ¢1 > 1/4) is bound to collect 37.5% of the votes in this case. Therefdreosing 14
is as good as choosing any other positionQrl] for candidate 1 given the actions of others, she
maintains a payoff level of 0 with any such choice. So, at ttodile (¢1,¢2,¢3) = (1/4,1/4,3/4),
neither candidate 1 nor candidate 2 can force a win by meaasuailateral deviation, and we
conclude that this outcome is a Nash equilibriu@h#éllenge Compute all the Nash equilibria of
this game.)

But in voting problems the issue of coalitions arise veryuraty. So we better ask if the
equilibrium (1/4,1/4,3/4) is actually strong or not. Indeed, it is not. For, candiddtesd 2 can
jointly deviate at this profile to, say,/8 — € for smalle > 0, and thus force a win (which yields a
payoff of 1/2 to each). What is more, there is no strong Nash equilibritithi® game. Challenge
Prove this.)

Elections when running is costly
In this case, staying out is a meaningful alternative fohgaalitical candidate. Consequently,
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we model the situation as a game in strategic form by sefiimgach candidate A; = [0, 1)U {stay
out} and

if i wins the election alone at the position profile

if i ties for the first place at the position profile

if i stays out at the position profile

—1, if i runs but loses the election at the position profile

U; (f) =

O NIk P

where? € L, A with n € {2,3}.
The equilibrium analysis of this game is essentially idgaitio the first game considered above
whenn = 2. Consequently, we leave the related analysis as an

Exercise.Prove: Ifn= 2, the unique Nash equilibrium of the game defined aboy#/8,1/2).

Once again, life is more complicated in the 3-person scenhtit now this is not because of
the multiplicity of equilibria. On the contrary, this gamashno Nash equilibrium whem= 3. A
sketch of proof can be given as follows. First observe thiateseach candidate can avoid losing
by staying out of the election, all running candidates miedior the first place in any equilibrium.
Moreover, there cannot be only one running candidate inlibguim, for otherwise, any other
player may choose the same location with the running cateliad forces a tie for the first place
(which is better than staying out). Similarly, it cannot batteveryone stays out in equilibrium.
Therefore, in any given equilibrium, there must exist twaymre running candidates who tie for
the first place. Consider first the possibility that there etactly two such candidates. Then, by
the exercise above, both candidates must be choogidgBLt since the running candidates share
the total votes, the remaining candidate can force a win lopsing slightly to the left (or right)
of 1/2. Thus staying out cannot be a best response for this caaditantradicting that we are at
an equilibrium. The final possibility is the case in which thitee candidates choose not to stay
out and tie for the first place. Suppose that ¢»,¢3) is such an equilibrium. 1f; = ¢, = (3, any
one of the candidates can profitably deviate and force a wiryf)y so at least two components
of (¢1,¢2,¢3) must be distinct. Suppose thét# ¢> = /3. In this case, candidate 1 can force a
win by getting very close t@, (see this?), and hence she cannot be best responding inofile pr
(¢1,¢2,43). The two other possibilities in which exactly two componeoit$/y, ¢, ¢3) are distinct
are ruled out similarly. We are then left with the followingdi possibility: /1 # ¢» # (3 # (1. To
rule out this case as well, we pick the leftist candidatd, leadi (so we have; = min{/¢y,¢2,¢3}),
and observe that this candidate can force a win by choosirasiéign very close to the median
of {¢1,02,¢3}. So, finally, we can conclude that there does not exist a Ngshi@ium for the
3-person voting game at hand.
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The following table summarizes our findings in the four sgatdbting games we have examined
above.

The number of candidates
2 3
the only equilibrium

Running is costly a Nash equilibrium does not exist

is the median position

the only equilibrium there are many Nash equilibria but a

not costly | _ - o _
is the median position| strong Nash equilibrium does not exist

It is illuminating to observe how seemingly minor alterasdn these voting models result in such
vast changes in the set of equilibria.



Chapter 5

Mixed Strategy Equilibrium

5.1 Introduction

Up to now we have assumed that the only choice available y@pavas to pick an action from
the set of available actions. In some situations a player weayt to randomize between several
actions. If a player chooses which action to play randoméysay that the player is usingnaixed
strategy as opposed to pure strategy In a pure strategy the player chooses an action for sure,
whereas in a mixed strategy, she chooses a probabilityldistm over the set of actions available
to her. In this section we will analyze the implications dbaling players to use mixed strategies.

As a simple illustration, consider the following matchipgnnies game.

H T
H[1-1]-11
T|-11|1-1

If we restrict players’ strategies only to actions, as weehd@ne so far, this game has no Nash
equilibrium (check), i.e., it has no Nash equilibrium in ptrategies. Since we have argued that
Nash equilibrium is a necessary condition for a steady ,sthies that mean that the matching-
pennies game has no steady state? To answer this questioa &ibw players to use mixed
strategies. In particular, let each player pldyand T with half probability each. We claim that
this choice of strategies constitute a steady-state, ise¢hee that if each player predicts that the
other player will play in this manner, then she has no reasariaplay in the specified manner.
Since player 2 play$l with probability 1/2, the expected payoff of player 1 if she playsis
(1/2) (1) + (1/2) (—1) = 0. Similarly, the expected payoff to actiohis 0. Therefore, player 1
has no reason to deviate from playifgand T with probability 1/2 each. Similarly, if player 2
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predicts that player 1 will playd and T with half probability each, she has no reason to deviate
from doing the same. This shows that the strategy profile evipdayer 1 and 2 playd and T
with half probability each is a steady-state of this sitmati We say that playingd and T with
probabilities 2 and J/2 respectively constitutes a mixed strategy equilibriunthaf game.

If we assume that players repeatedly play this game anddstrexach other’s action on the
basis of past play, then each player actually has an ineetdiadopt a mixed strategy with these
probabilities. If, for example, player 1 play$ constantly, rather than the above mixed strategy,
then it is reasonable that player 2 will come to expect himlay 1 again and play her best
response, which i§. This will result in player 1 getting-1 as long as he continues playif
Therefore, he should try to be unpredictable, for as soorisaggponent becomes able to predict
his action, she will be able to take advantage of the sitnatibherefore, player 1 should try to
mimic playing a mixed strategy by playird andT with frequencies 12 and /2.

Consider the Hawk-Dove game for a another motivation.

H D
H[o0o0]61
D|16]33

Suppose each period two randomly selected individuals, lndtb belong to a large population,
play this game. Also suppose that43of the population play$i (is hawkish) and 14 playsD
(is dovish), but no player can identify the opponent’s typéobe the game is played. We claim
that this is a stable population composition. Since the oppbis chosen randomly from a large
population, each player expects the opponent to idlayith probability 3/4 andD with probability
1/4. Would a dovish player do better if she were a hawkish playeefl, \bh average a dovish player
gets a payoff 0of3/4) (1) + (1/4) (3) = 3/2. A hawkish player get§3/4) (0) + (1/4) (6) = 3/2 as
well. Therefore, neither type of player has a reason to chagybehavior.

5.2 Mixed Strategies and Expected Payoffs

Definition. A mixed strategy a; for playeri, is a probability distribution over his set of available
actions A;. In other words, if player hasmactions available, a mixed strategy isranlimensional
vector (at,a?,...,aM) such thaok > 0, forallk=1,2,...m, andy} , ok = 1.

We will denote bya; (&) the probability assigned to actiam by the mixed strategw;. Let
A (X) denote the set of all probability distributions on a XetThen, any mixed strategy; for
playeri is an element ofA (A)), i.e., a; € A(A). Following the convention we developed for
action profiles, we will denote by = (a);.y @ mixed strategy profile, i.e., a mixed strategy for
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each player in the game. To denote the strategy profile intwilayeri playsa; and the rest of the
players playaj, j # i, we will use (ai’,a’:i) . Unless otherwise stated, we will assume that players
choose their mixed strategies independently.

Notice that not all actions have to receive a positive praitalin a mixed strategy. Therefore,
it is also possible to see pure strategies as degeneraté strategies, in which all but one action
is played with zero probability.

Let us illustrate these concepts by using the Battle of tke$Sgame that we introduced before:
m o

2,11 0,0
o|00]1,2

A possible mixed strategy for player 1(i5/2,1/2) , oras (m) =04 (0) = 1/2. Anotheris(1/3,2/3),
oray(m)=1/3,a1(0) = 2/3. For player 2, we may have/3,1/3) , i.e.,az(m) =2/3,da,(0) =
1/3, as a possible mixed strategy. A mixed strategy profile coad(tk/2,1/2),(2/3,1/3))
another could bé(1/3,2/3),(2/3,1/3)). Notice that we always have; (0) = 1— a1 (m) and
02 (0) = 1—a,(m) simply because probabilities have to add up to one. Thexefmmetimes we
may want to simplify the notation by defining, say= a;(m), q= a2 (m), and using(p,q) to
denote a strategy profile, where player 1 choasegth probability p and actiono with probabil-
ity 1 — p, and player 2 choosas with probability g and actiono with probability 1— g. Notice,

if there were 3 actions for a player, then we would need at kwas numbers to specify a mixed
strategy for that player.

Once we allow players to use mixed strategies, the outcomewadeterministic anymore. For
example if both players plapwith probability 1/2 in the BoS game, then each action profile is ob-
tained with probability ¥4. Therefore, we have to specify players’ preferences ovégries, i.e.,
over probability distributions over outcomes, rather tipasferences over certain outcomes. We
will assume that players’ preferences satisfy the assemptbf\VVon Neumann and Morgenstern
so that the payoff to an uncertain outcome is the weightedageeof the payoffs to underlying
certain outcomes, weight attached to each outcome beingrthability with which that outcome
occurs. (See Dutta, P., ch. 27 for more on this). In other gjone assume that for each player
there is a payoff function; defined over the certain outcomas A, such that the player’s pref-
erences over lotteries dhcan be represented by the expected valug .df each outcome € A
occurs with probabilityp (a) , then the expected payoff of playkeis

Ui (p) = Z\p(a)ui (a).
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Example 5.1. For example, in the BoS game if each plaiptays the mixed strategy;, then the
expected payoff of playeris given by

U (0g,02) = o1 (M)az (M) u (mm)+ag(m)az (o) u (m,0)
+ a1 (0)az (m)ju; (o,m)+ a1 (0) a2 (0)u; (0,0)
= 0 (M) [az (M) i (M, m) + a2 (0) Ui (M, 0)]
+0a1(0) [az (M) ui (0,m) 4 a2 (0) ui (0,0)]
) Uy (

=01 (m)ug(m,az) + 01 (0)uy (0,02),

or,

uz (0q,02) = o1 (M)az (M) (2) 4+ ag(m)az (o) u (m,0) (0)
+az(0)az(m) (0) +az (0) az(0) (1)
=201 (M)ay(m)+as(0)az(0),
and that of player 2 is
Uz (01,02) = a1 (m)az(m)+ 201 (0)az(0).

Notice that, sincei; (0) = 1— a; (m), we can write these expected payoffs as

U (01, 02) = 201 (M) a2 (M) + (1 — a1 (M) (1—az(m))
=1—0a2(m)+ag(m)[3az (M) —1]

and
Uz (0q,02) = 2— 207 (M) + a2 (M) [30q (M) — 2].

For example, if player 1 plays for sure, i.e.a; (m) = 1, and player 2 playsn with probability
1/3, then

Ul((Xl,(Xz) = l—l/3—|—l[3>< (1/3)—1]
=2/3

and

U (01,02) = 2—2(1) +(1/3) [3(1) — 2]
=1/3.



5.3. Mixed Strategy Equilibrium 75

Definition. Thesupport of a mixed strategy; is the set of actions to whiaoty assigns a positive
probability, i.e.,
supp(ai) = {& € Ai: aj(a) > 0}.

In the above example we hawpgay) = {m}, andsupgaz) = {m,o0}.

5.3 Mixed Strategy Equilibrium

Definition. Best response correspondencef playeri is the set of mixed strategies which are
optimal given the other players’ mixed strategies. In otherds:

Bi(a-i) = arg max u (aj,a).

Example 5.2. Supposex; (m) = 1/2. Then, we have

up (0, (1/2,1/2)) = 1— 1/2+ oy (m) [3(1/2) — 1]

=3 N

therefore,

B1((1/2,1/2)) = {(1,0)}.

In general, lettingp = a1 (M), andqg = az (m), we can express the best response of player 1 in
terms of optimal choice o in response tq

{1}, ifgq>1/3
Bi(a)=¢ [0,1], ifq=1/3 .
{0}, ifg<1/3

The best response correspondence of player 2, i.e., opthoales ofg in response t, is

{1}, ifp>2/3
B2(p)=1¢ [0,1], ifq=2/3 .
{0}, ifg<2/3

[See Figure 1.]

Definition. A mixed strategy equilibrium is a mixed strategy profitg, ..., a;,) such that, for all
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Figure 5.1: Best Response Correspondences in BoS game

o earg max u (aj,a*;
! gaieA(A@) I( I I)

or
o € Bi(a;).

In the Battle of the Sexes game, then, the set of mixed strétegh equilibria is

{((1,0),(0,1)),((0,1),(1,0)),((2/3,1/3) ,(1/3,2/3))} -

Alternatively, we may say that the set of mixed strategy ldayia is
{(al (m) , a2 (m)) : (17 O) ’ (07 1) ’ (2/37 1/3)} .

Remarks.1l A mixed strategya; is a best response to_; if and only if every action in the support
of a; is itself a best response to j. Otherwise, player could transfer probability from the action
which is not a best response to an action which is a best respond strictly increase his payoff.

Remarks.2. This suggests an easy way to find mixed strategy Nash equitibrA mixed strategy
profile a* is a mixed strategy Nash equilibrium if and only if for eachy@ri, each action in the
support ofo” is a best response to';. In other words, each action in the supporogfyields the
same expected payoff when played agaaist and no other action yields a strictly higher payoff.

Remark5.3. One implication of the above remark is that a nondegeneratedhstrategy equilib-
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rium is not strict.

Example 5.3.In the BoS game, ifa;, a3) is a mixed strategy equilibrium wiupga;) =supgos) =
{m, 0}, then it must be that the expected payoffsri@ndo are the same for both player against
a*;. In other words, for player 1

2a3 (m) = 1 aj(m)

and for player 2
oy (m)=2-2a7(m)

which imply that

aj (m)=2/3

Proposition 5.1. Every finite strategic form game has a mixed strategy eqiuilif.

5.4 Dominated Actions and Mixed Strategies

In earlier lectures we defined an action to be weakly or $tradiminated, only if there existed
another action which weakly or strictly dominated that@ttiHowever, it is possible that an action
is not dominated by any other action, yet it is dominated byix@ethstrategy.

Definition. In a strategic form game, playés mixed strategyx;® strictly dominates her actiog
if
ui (oi,ai) > Ui (&,a ) foralla_j e Aj.

Example 5.4. Consider the following game,

L R
T 11|10
M|30]03]
B 01|41

Clearly, no action dominateB, but the mixed strateggi; (M) = 1/2, a4 (B) = 1/2 strictly domi-
natesT.

Remarks.4. A strictly dominated action is never used with positive @bttty in a mixed strategy
equilibrium
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To find the mixed strategy equilibria in games where one ofpilagers have more than two
actions one should first look for strictly dominated actiansl eliminate them. (see example 118.2
in Osborne chapter 4 on my web page).



Chapter 6

Bayesian Games

So far we have assumed that all players had perfect infoomaégarding the elements of a
game. These are called games with complete information.negaithincomplete information,
on the other hand, tries to model situations in which somgsptahave private information before
the game begins. The initial private information is calleétype of the player. For example, types
could be the privately observed costs in an oligopoly gameyrivately known valuations of an
object in an auction, etc.

6.1 Preliminaries

A Bayesian gamds a strategic form game with incomplete information. It sists of:

a set of playersN = {1,...,n},

and for each € N

an action seth;, (A= XjenA))

atype set@;, (@ = xieNG;)

a probability function,
Pi - Oi — A(O_i)

a payoff function,
U:Ax0O—=R.

79
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The functionp; summarizes what playébelieves about the types of the other players given her
type. So,p; (6_i|6;) is the conditional probability assigned to the type prdiilec ©_;. Similarly,
Ui (a/0) is the payoff of player when the action profile ia and the type profile i§.

We call a Bayesian ganfanite if N, A; and®; are all finite, for alli € N. A pure strategy for
playeri in a Bayesian game is a function which maps plaigetype into her action set

8:0 — A,

so thata; (6;) is the action choice of typ@ of playeri.
A mixed strategy for playeris
a:60; — A (A|)

so thata; (&]6;) is the probability assigned ly; to actiong; by type6; of playeri.

Suppose there are two players, player 1 and 2 and for eacérplasre are two possible types.
Playeri’s possible types ar@ and6;. Suppose that the types are independently distributed &nd th
probability ofB; is p and the probability 08, is g. For a given pure strategy profig the expected
payoff of player 1 of type; is

quy (a1 (61),85(62)(01,02) + (1 —a) s (81 (61) ,85 (83) [61,83) -
Similarly, for a given mixed strategy profite* the expected payoff of player 1 of tyjde is

03 0 (26 ot (2) s (30,2018, 82) + (1) 5 ot (180) i3 (2018 ) s (21, 20[64.6))
ac

ac

6.2 Bayesian Equilibrium

Definition. A Bayesian equilibrium of a Bayesian game is a mixed strategy pradfile- (a;)
such that for every playarc N and every typd®; € ©;, we have

ieN»

a;(.[6) € arg max pi (0-i16) a;j(ajl8;) | y(a)ui(a®).
VGA(A‘)B,igO,i ae% jem{l}

Remarl6.1 Type, in general, can be any private information that isnai¢to the player’s decision

making, such as the payoff function, player’'s beliefs abmther players’ payoff functions, her

beliefs about what other players believe her beliefs am saron.

Remark6.2 Notice that, in the definition of a Bayesian equilibrium weddo specify strategies
for each type of a player, even if in the actual game that iggulaall but one of these types are
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non-existent. This is because, given a player’s incomplg@mation, analysis of that player's
decision problem requires us to consider what each typeedafttier players would do, if they were
to play the game.

6.3 Some Examples

6.3.1 Large Battle of the Sexes with incomplete information

Suppose player 2 has perfect information and two typesd h. Typel loves going out with
player 1 whereas typehates it. Player 1 has only one type and does not know whihisyplayer
2. Her beliefs place probability/2 on each type. The following tables give the payoffs to each
action and type profile:

B S B S
B|21]0,0 B| 20| 0,2
S{0,0] 1,2 S|101|1,0

typel typeh

We can represent this situation as a Bayesian game:
* N={1,2}

° A1=A2= {B,S}

@1 = {X},@z = {l,h}
* P(I¥) = pa(hlx) = 1/2, p2 (X|I) = p2(x/h) = 1.
* Ug,Up are given in the tables above.

Since player 1 has only one type (i.e., his type is common keaige) we will omit references
to his type from now on.

Let us find the Bayesian equilibria of this game by analyzimg decision problem of each
player of each type:

Player 2 of type I Given player 1's strategy1, his expected payoff to

* actionBisaj (B),
* actionSis 2(1— a3 (B))

so that his best response is to pByf a1 (B) > 2/3 and to playSif a; (B) < 2/3.
Player 2 of type h Given player 1's strategy, his expected payoff to
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« actionBis (1—ay(B)),

* actionSis 2a; (B)

so that his best response is to pByf a1 (B) < 1/3 and to playSif a; (B) > 1/3.
Player 1 Given player 2’s strategy (.|l) andaz (.|h), her expected payoff to

e actionBis 1 1
Eaz (BJl) (2) + Eaz(B]h) (2) =az(B|l)+0a2(Blh),

» actionSis

az (Bfl) + a2 (B[h)
2

2 (-0 (BI) (1) + 5 (1o (BIN) (1) =1 .

Therefore, her best response is to iy o (B|l) + a2 (B|h) > 2/3 and to playSif a, (B|l) +
a2 (Blh) < 2/3.

Let us first check if there is a pure strategy equilibrium inchhboth types of player 2 play
B, i.e. a2 (BJ|l) = az(Blh) = 1. In this case player 1's best response is to @aas well to which
playingB is not a best response for player 2 typ&imilarly check thati, (B|l) = a; (Blh) = 0 and
a2 (B|l) =0 anday (B|h) = 1 cannot be part of a Bayesian equilibrium. Let’s cheakqifB|l) =1
anday (BJh) = 0 could be part of an equilibrium. In this case player 1's lbesponse is to plai.
Player 2 typd’s best response is to pl&/and that of typéhis S. Therefore,

(a1 (Bfx), a2 (B|l), 02 (B[h)) = (1,1,0)

is a Bayesian equilibrium.

Clearly, there is no equilibrium in which both types of playemixes. Suppose only tyde
mixes. Thena; (B) = 2/3, which implies thato, (B|l) + az (B|h) = 2/3. This, in turn, implies
thata, (Blh) = 0. Sincea; (B|h) = 0 is a best response ¢q (B|x) = 2/3, the following is another
Bayesian equilibrium of this game

(a1(B),0z2(BJl),0z2(Bh)) = (2/3,2/3,0).
As an exercise show there is one more equilibrium given by

(a1 (B),02(B|l),02(Blh)) =(1/3,0,2/3).
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6.3.2 Cournot Duopoly with incomplete information.

The profit functions are given by
u=aq(6—ag-—aqj).

Firm 1 has one typ®; = 1, but firm 2 has private information about its type Firm 1 believes
that®, = 3/4 with probability 1/2 and6, = 5/4 with probability 3/2, and this belief is common
knowledge.
We will look for a pure strategy equilibrium of this game. i@ of type8,’s decision problem
is to
maxq (62—01—0p)
which is solved at

* 02 —
G3(8) = 2.

Firm 1's decision problem, on the other hand, is

ngl?X{%ql(l—ql—qé (3/4) + %ql(l—ql—q§(5/4))}

which is solved at

. _ 2—05(3/4) —03(5/4)
ql - 4
Solving yields,
L1 1,5
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Chapter 7

Extensive Form Games with Perfect
Information

7.1 Extensive Form Games

So far we have assumed that players, when taking their actather did so simultaneously,
or without knowing the action choice of the other playersthaugh, this modelling assumption
might be appropriate in some settings, there are many isihgain the world of business and poli-
tics that involve players moving sequentially after obseywvhat the other players have done. For
example, a bargaining situation between a seller and a looggiinvolve the buyer making an offer
and the seller, after observing the buyer’s offer, eitheepting or rejecting it. Or imagine an in-
cumbent senator deciding whether to run an expensive adaigmifor the upcoming elections and
a potential challenger deciding whether to enter the rac®rafter observing the campaign deci-
sion of the incumbent. Both of these situations involve gglahoosing an action after observing
the action of the other player.

The extensive formof a game, as opposed to the strategic form, provides a mpremmate
framework to analyze certain interesting questions thiaedn strategic interactions that involve
sequential moves.

7.1.1 Game Trees

As you now very well know, strategic form of a game has thregddients: (1) the set of
players, (2) the set of actions, and (3) the payoff functiolse extensive form provides a richer
specification of a strategic interaction by specifyimgo moveswhen doing what and withwhat

85
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information . The easiest way to represent an extensive form game is @ge®e tree which is
a multi-person generalization of a decision tree.

To illustrate, let us go back to the bargaining example alamgeassume that the buyer moves
first by offering either $500 or $100 for a product that sheugal $600. The seller, for whom
the value of the object is $50, responds by either accepfipgi(rejecting R) the offer. We can
represent this situation by the game tree in Figure 7.1.

500,50 0,0 100450 0,0
Figure 7.1: Bargaining Game

Game trees are made up of

* nodes

branches

* information sets

player labels

action labels
and
* payoffs.

Nodesare of two types:Decision nodesepresent the points in the game at which players
make a decision, i.e., choose an action, or a strategy irrgleres any other tree, a game tree has
a root and it is useful to distinguish the root, which we willahe initial node, from the other
decision nodes (it is represented by an open circle whetktieather nodes are represented by
closed circles). To each decision node, including theahitbde, one, and only one, player label
is attached, to indicate who moves at that particular daciebde. The second type of nodes are
calledterminal nodesand at these nodes the game is over and nobody takes any acyiomore.

To each terminal node @ayoff vector is appended.
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From each decision node, one or more branches emanate, reaci bepresenting an action
that can be taken by the player who is to move at that node. &adihbranch is labelled with the
action that it represents. A branch either leads to another decisdole or to a terminal node.

The last component that we have to talk about isitifi@mation sets. Information sets tell us
what the players know when they are making a decision. Theegaltections of decision nodes of
a player that cannot be distinguished from the perspecfittead player. We can illustrate it using
the bargaining example under the assumption that the ssdlerehow, does not observe the buyer’s
offer before deciding whether to accept or reject it. We dethiis informational assumption by
connecting the two decision nodes of the seller with a daBhedsee Figure 7.2).

500,50 0,0 100450 0,0
Figure 7.2: Bargaining Game with Imperfect Information

Notice that the actions available to the seller at the twaesdtiat are in the same information
set must be the same, otherwise the seller would be abletitogiissh between them by just looking
at the actions available to her.

In this section we will deal with extensive form games withfpet information in which every
player can distinguish between any two decision nodes amcehee will not have to worry about
information sets.

7.1.2 Strategies

Strategies in a strategic form game are either action chaicgrobability distributions over
actions. In an extensive form game, description of a styaigegnore involved since players may
have to choose actions at several points in the game. Therefpure strategy of a player in an
extensive form game has to specify an action choice at eamigidn node of that player. In that
sense, a strategy is a complete plan of action, so complgté thwas handed over to a computer,
the computer would know what to do under every contingenay.dédhote a pure strategy of player
i by 5, and the set of all pure strategies 8y

For example, in the extensive form game in Figure 1, a pusdegly for the buyer is easy
enough: it has to specify what price to offer at the initialaoA pure strategy for the seller, on the
other hand, has to specify an action at each decision nodaapée called upon to move. So, the
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buyer has two pure strategies available to her: 100 and 5@henceSs = {100,500} . The seller,
however, has four pure strategies: £, (2) AR (3)RA (4)RR and henc& = {AA AR RARR}.

The extensive form strategies sometimes lead to confudi@t.us try to illustrate why, by
looking at the extensive form game in Figure 7.3.

1,-10 2,1
Figure 7.3: Another Extensive Form Game

A strategy for player 1 in this game has to specify an actioevaty decision node she has,
and there are two such nodes. She, therefore, has fourgsgsitel’, LR, RL, RR. Notice that
the first two strategies specify an action even at playereiceisd decision node which would not
be reached if those strategies were implemented. The redsgnwill become clear in the next
section, after we analyze the optimal behavior of playems.rew, let us look at the game tree of
the senate-race game (see Figure 7.4) to further illustnateoncepts introduced so far.

11 3,3 2,4 4,2
Figure 7.4: Senate-Race Game

In this gameS = {A,N} andS = {eeennenn}.

7.2 Backward Induction Equilibrium

As in the strategic form games, the equilibrium concept teresive form games is based upon
the idea that each player plays a best response to the plag athier players. The difference is
that we now require strategies to be optimal at every stepdargame. Th&éackward induction
equilibrium is an algorithm that results in a recommendation of an aatimice at every decision
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node with the property that if every player follows thoseomeendations their strategies would
be optimal at every decision node theyaybe called upon to move. This will also result in a path
of play (i.e., a sequence of branches) which will be callexbdckward induction outcome.

The algorithm is really simple. You, the game theorist, gahte final decision nodes and
determine the best action available to the players who ameotee at those nodes. Since there is
no more moves after players make their moves at these decisites, this boils down to choosing
the action that leads to the highest payoff for the player whooving. (If there is a tie between
two actions that lead to the highest payoff, you may simplgoste one of them.) After you have
done that, you prune all the actions that are not chosen goirjdicate the ones that are chosen by
an arrow-head) and go to the penultimate decision nodestéondime the optimal action at those
nodes. You continue in this manner until you reach to theainitode and determine the optimal
action there.

For example, in the bargaining game we start with the selldecision nodes which are the
final decision nodes in the game tree. Since accepting bfghsa$ optimal we mark the branches
labelledA by arrow-headsOnce we do that, it is easily seen that the best action foreplays to
offer $100. Therefore, the backward induction equilibriahthe bargaining game {200 AA) and
the backward induction outcome(i$00,A) . (See Figure 7.5) The backward induction equilibrium
of the senate race game(is, ne) and its backward induction outcome(is, n) . (See Figure 7.6).

50050 0,0 100450 0,0
Figure 7.5: Bargaining Game

1,1 3,3 2.4 4,2

)

Figure 7.6: Senate-Race Game

As an exercise verify that the backward induction equilibriof the game in Figure 7.3 is
(LR,r). This example illustrates why player 1's strategy had to pem action even after she
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has previously chosel. WhetherL is optimal or not for player 1 depends on what she believes
that player 2 will do. If she believes that player 2 is goinglmwosd, thenL is not optimal. But,
whether player 2 will chooskor not depends on what player 2 believes that player 1 is going
do in her last decision node. Therefore, to determine thenaptaction for player 1 at her first
decision node, we have to specify what she intends to do dasiedecision node.

1,-10 2,1
Figure 7.7: Another Extensive Form Game

7.2.1 Commitment and Mover Advantages

The bargaining and the senate-race games illustrate anrtmmpghenomenon that arise in
many extensive form games, i.the power of commitment Suppose that the seller could, some-
how, commit herself to accepting only the offer 500 and thistis known to the buyer. Now, given
that knowledge, the best that the buyer can do is to actufity 500, because otherwise her offer
will be rejected and she will receive 0, whereas offering §id@s her 100. Therefore, public, and
credible, commitments could increase a player’s payoffiexensive form game. Notice that this
is similar to eliminating actio\ after the offer 100. This is in stark contrast to the singtividual
decision making problems where eliminating an action carenienprove one’s payoff.

Similarly, in the senate-race game, if the challenger cpuldicly commit to entering the race
irrespective of the campaign decision of the incumbent,bibgt thing the incumbent could do
would be not to run campaign ads and hence the challengedwespond by entering the race and
obtaining a payoff of 4 rather than 3 that she was gettingérbiéicckward induction equilibriurh.

Another interesting phenomenon that arise in certain sienform games is that dirst
mover advantage For example, in the senate-race game, when the incumbergsiost, both
players obtain a payoff of 3 in the backward induction efuilim. Now, let us change the order
of the moves so that it is the challenger who moves first sovtleabbtain the game tree depicted
in Figure 7.8.

1See Thomas Schelling (196@)he Strategy of Conflicfor an excellent account of the idea of credible commitrsent
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11 2,4 3,3 4,2
Figure 7.8: Modified Senate-Race Game

The backward induction equilibrium of this game(esNN) which yields a payoff of 4 to the
challenger and a payoff of 2 to the incumbent. Thereforégythad the chance, both players would
prefer to move first in this game. This is similar to the idehibé the power of commitment. By
choosinge the challenger commits herself to entering whatever thenrment does.

However, not all games have a first mover advantage. Quitgstadntrary, some games have
second mover advantage Consider a game in which the incumbent (who belongs to aisigh
party) and the challenger (who belongs to a leftist partya isenate race are choosing political
platforms; either a leftist or a rightist one. Suppose thhbth of them choose the same platform
the incumbent wins the elections, whereas if they chooderdiit platforms it is the challenger
who wins. The candidates mostly care about winning, but #isg would like to win (or lose)
without compromising their political views. The game treeFigure 7.9 depicts the situation if
it is the incumbent who moves first, whereas the one in Figut® ieverses the order of moves.
Verify that this game exhibits second mover advantage.

10 -11 0,2 2,—1
Figure 7.9: Senate-Race Game Il

1,0 0,2 -1,1 2,-1
Figure 7.10: Modified Senate-Race Game Il
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7.3 Game Trees: A More Formal Treatment

A game tree is a collection of nodes, callédand a binary relation between the nodes called
aprecedenceelation, denoted-. Given two nodest andf3 in the game treex > 3 means thatt
precede$. Using this relation, we can define the set of predecessansasf

Pa)={teT:t>a}

and the set of successors as
S(a)={teT:a>t}.

The setP(a) is simply the set of nodes from which one can go (through aesszpiof branches)
to a. Similarly, the set of successors mfis the set of nodes to which one can go starting from
The precedence relation

1. is asymmetric, i.e., there exists ag € T such that = B andp > q;
2. is transitive, i.e.t > 3 andp >~ yimpliesa > y;

3. there is a common predecessor to any two non-initial nagesfor alla,3 € T, with P(a) #
0 andP(B) # 0, there exists g € T such thaty € P(a) andy € P(B).

4. and satisfies the following property

If a >~ yandp > v, then eithex - B orf3 > a.

The first two conditions guarantee that there are no cyclaedérgame tree, while the third
condition guarantees that there is a unigue initial nodee [kt condition guarantees that starting
from any node there is a unique path back to the initial node.

Theorem 7.1. Kuhn's (Zermelo’s Theorem). Every finite extensive formegaiith perfect infor-
mation has a backward induction equilibrium.

Proof. Omitted.

7.4 Strategic Form of an Extensive Form Game

The strategic form is given by
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1. The set of playerhl,

and for each player
2. The set of strategies,

3. The payoff function,
u:S—R

whereS= xcnS is the set of all strategy profiles.

So, the only difference from the standard definition of ategi& form game is the use of
strategies rather than actions.

As an illustration, let us find the strategic form of the bamgay game. The set of players
is N = {B,S}, the set of strategies af = {100,500} andSs = {AA AR RARR}. The payoff
functions are represented in the following bimatrix

AA AR RA RR
100 [ 50050 | 500,50 | 0,0 0,0
500 | 100,450 | 0,0 100,450 | 0,0

Definition. A strategy profiles* € Sis a Nash equilibrium if for each player
u(s,s) >ui(s,s) foralls € S

or equivalently, if for each player
s €Bi(s).

Therefore, the above bargaining game has three Nash e@ui(itD0,AA), (100,AR), and
(500,RA) . Notice that the first two Nash equilibria result in the sam&ome as does the back-
ward induction equilibrium, i.e.(100 A), whereas the third one results in the outcof880 A) .
This last equilibrium, however, is sustained byiaaredible threat by the seller, i.e., the threat
that she will not accept the offer of $100. This threat is metible because, if it was tested by
the buyer, i.e., the buyer were to offer $100, then the saltarld actually find it in her interest to
accept the offer.

Backward induction equilibrium concept eliminates eduii based upon incredible threats by
demanding players to be rational at every point in the gang@pperty that we calkequential
rationality . Sequential rationality is stronger than just requiringtrategies to be best responses
to the strategies of the other players, i.e., stronger thamationality requirement behind the Nash
equilibrium concept. For example, in the bargaining ganwvapthe strategiRAis a best response
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to the offer of $500, but is not sequentially rational, besgai specifies the seller to reject the offer
of $100, and this is not rational at the decision node of tllers®llowing the offer of $100.

7.5 Extensive Form Games with Imperfect Information

In the previous section we have analyzed extensive form gawite perfect information where
every player had a perfect knowledge of what had happenadopsty in the game, i.e., each
player observed the previous moves made by the other plajrethis section we will relax this
assumption and allow the possibility that some of the previmoves by other players are not
observed when a player is called upon to move. Such gameal@deaxtensive form games with
imperfect information .

In extensive form games with imperfect information, theimobf information sets, which we
have introduced in the last section becomes crucialindarmation set of playeri is a collection
of decision nodes of playéthat cannot be distinguished by playefherefore, if the game reaches
to any of the nodes in an information set of a player, thatglapes not know which of the nodes
in that information node has actually been reached.

As an example consider the bargaining game with imperfdotrimation (see Figure 7.2). In
this game there is one information set of the seller thatainstthe decision nodes following the
offers 100 and 500. When the seller is called upon to move,dsies not know which of the
two offers have been made, i.e., which of the two decisioreadd the information set has been
reached. The strategy sets are giverShy= {100,500} andSs = {A,R} and hence we have the
following strategic form of this game

A R
100 [ 50050 | 0,0
500 | 100,450 | 0,0

The unique Nash equilibrium of this game is theref¢t®0 A), the same outcome as the
backward induction equilibrium outcome of the bargainirmgng with perfect information! The
reason why we have a unique Nash equilibrium outcome in thisegis that we have eliminated
the seller’s ability of making a non-credible threat of otjeg the offer of $100.

We may think of extensive form with imperfect information ageneralization of extensive
form with perfect information. In the latter, all the infoation sets are singletons, i.e., they each
contain a single node, whereas in the former there is atdgesinformation set that contains more
than one node.

As an another example consider the following entry-gamep8se Pepsi is currently the sole
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provider in a market, say in Bulgaria. Coke is consideringenter the market. If Coke enters,
both firms simultaneously decide whether to act to(ihor accommodatéA). This leads to an
extensive form game with imperfect information whose garmae tepresentation is given in Figure
7.11, where the first number in a payoff vector belongs to Gakethe second to Pepsi.

-2,-1 -3,1 0,—3 1,2

Figure 7.11: Entry-game.

In this gameS: = {OT,OA ET,EA} andSs = {T,A}, and hence we have the following strate-

gic form:
T A

oT [ 0,5 0,5
OA [ 0,5 0,5
ET|-2-1/0-3
EA| 31 [12

There are three Nash equilibria of this gant®T,T), (OA T),(EAA). In the second Nash
equilibrium Coke is supposed to accommodate and Pepsimsed to act tough, following Coke
entering the market. Is that reasonable? In other wordgposgp the game actually reached that
stage, that is Coke actually entered. NowAsT) a reasonable outcome? One way of asking the
same question is to check if both players are acting rafijgriad., best responding to each other’s
strategies, conditional upon Coke entering the marketichahat conditional upon Coke entering
the market we have the following “game”
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—2,-1 -3,1 0,-3 1,2

Figure 7.12: Entry-“game”.

which has the following strategic form

Pepsi
T A
Coke T |-2,-1|0,-3
A|l-31 |12

If Coke anticipates Pepsi to pldy then its best responseTsas well, notA. (Neither isT a best
response for Pepsi #.) Therefore, to the extent that we regard only Nash equilibrautcomes
as reasonable, we conclude tliat T) is not reasonable. In contrast, the post-entry behavior of
both players are rational in equilibr{®T,T) and(EAA).
7.5.1 Subgames and Subgame Perfect Equilibrium

Subgame perfect equilibrium is a generalization of the vt induction equilibrium to ex-
tensive form games with imperfect information. To definegarhe perfect equilibrium we have to
first define a subgame.

Definition. A subgameis a part of the game tree such that

1. it starts at a single decision node,
2. it contains every successor to this node,

3. if it contains a node in an information set, then it cordaal the nodes in that information
set.
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It is conventional to treat the entire game as a subgame diralidae other subgamesroper
subgames.For example, the entry-game given in figure 7.11 has two subgathe game itself
and the subgame which starts after Coke enters the marketou®$e, only the latter is a proper
subgame.

Given a subgameg, let us denote the restriction of a strategyo that subgame by s |q. For
example, if we denote the post-entry subgame in the entmyeday e (this subgame is given in
figure 7.12), therOT|e =T, EAle = A, etc.

Definition. A strategy profiles® in an extensive form ganie is asubgame perfect equilibrium
(SPE) if for every subgamgof I, s*| is a Nash equilibrium of.

Therefore, there are two SPE of the entry-ga@T, T) and(EA A).

We can now obtain a better insight into the difference betwseégame perfect equilibrium
(or backward induction equilibrium) and Nash equilibriusnusing the language of subgames. We
first have to distinguish between subgames that can be ragh® strategy profile and those that
cannot be reached. A subgame camdaschedunder the strategy profike Sif, when the strategy
profile is implemented, the initial node of the subgame wdliually be reached. Otherwise, we
say that the subgame cannot be reached under the stratdily gpra strategy profiles* is a Nash
equilibrium if every player plays a best response to thetesgias of the other players in every
subgame that can be reached unsferin contrast, a strategy profile is a SPE if every player
plays a best response to the strategies of the other playersery subgame, i.e., even in those
subgames that cannot be reached umstlein other words, Nash equilibrium demands rationality
in only those subgames that can be reached in equilibriuneyeds SPE demands rationality in
every subgame, and this latter form of rationality is caleduential rationality.

As an exercise consider the game in figure 7.3 and find its Naghil@ia and SPE. Verify that
there are Nash equilibria in which one of the players do nbafe sequentially rationally, whereas
in all SPE both players act sequentially rationally.



98

Extensive Form Games with Perfect Information




Chapter 8

Extensive Form Games: Applications

8.1 Bargaining

Bargaining has been one of the most elusive areas in ecosoMiny great economists have
declared that standard tools of economics cannot prediticge outcome to bargaining situations
because the outcome is likely to be determined by many noneswic factors, such as psychology,
culture, history, political power, etc. One important dwn to the problem has been given by John
F. Nash, Jr., who, in his 1950 paper, took a cooperative apgprand showed that there is a unique
solution that satisfies certain “desirable” propertieso@rative game theory assumes that players
can sign binding contracts, whereas non-cooperative gaeoeyt rules out this possibility.

Nash has assumed that two people are bargaining over a se$sible outcomes, denoted by
SC R2. If the individuals fail to reach an agreement they both nezeutcome zerg0,0) , called
the disagreement point.Nash looked for solutions that satisfy the following pradjes:

Axiom 8.1 (Pareto Efficiency (PAR))No one can improve upon the solution without making the
other person worse off.

Axiom 8.2 (Symmetry (SYM)) Both individuals receive the same outcome if the bargaisetigs
symmetric.

Axiom 8.3 (Invariance (INV)) If the bargaining set is contracted or expanded by somerfabe
shares are also contracted or expanded by the same factor.

Axiom 8.4 (Independence of Irrelevant Alternatives (IIAdding alternatives to the bargaining
set that have not been chosen does not change the solution.
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Nash has shown that the unique solution that satisfies thiepenties is given by

(TTy, Ti) = arg MaxXmAT:.
meS

8.1.1 Ultimatum Bargaining

Two players, A and B, bargain over a cake of size 1. Player Aevaln offerxy € [0,1] to
player B. If player B accepts the offéy), agreement is reached and player A receiesnd
player B receives % xa. If player B rejects the offe(N), both players receive a payoff of zero.
This can be modelled as an extensive form game with perféatniration. However, it is not a
finite game as A has infinitely many actions.

We can use backward induction to find the subgame perfeclilmquin (SPE) of this game.
Consider a subgame that follows A's offerxflf x < 1, then B’s optimal action is to accept the
offer. If, on the other hanc = 1, then both accepting and rejecting are optimal. First, sepjploat
B accepts any offex € [0,1]. In this case, clearly, the optimal offer by Axg = 1. So, one SPE is
(1,s;(x)) where

S (x) =Y for all x € [0,1].

Now suppose B accepts only offers that are strictly smaflentone. What is A's optimal offer in
this case? Could offering 1 be optimal? No, because thisbaillejected by B resulting a payoff
of zero for A. Player A could deviate and offer something deraghan one and obtain a positive
payoff instead.. Could offering something strictly smallean 1 be optimal? No! To see why,
supposex < 1 is an optimal offer. This will be accepted by B and give plagea payoff of x.
However, player A can deviate and offe# €, with 0 < € < 1—xand hencex+ € < 1, which will
be accepted by B and give player A a payofixef € which is strictly larger thax. Therefore, the
unique SPE ig1,s; (x)) where

s;(x) =Y for all x € [0,1]

and the unique SPE outcome(Y)).

8.1.2 Alternating Offers Bargaining
Preliminaries

Two players, A and B, bargain over a cake of size 1. At time @gilad makes an offer
Xa € [0,1] to player B. If player B accepts the offer, agreement is red@nd player A receiveg
and player B receives -1 xa. If player B rejects the offer, she makes a counteroffee [0,1] at
time 1 If this counteroffer is accepted by player A, then player 8eireesxg and player A receives
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1—xg. Otherwise, player A makes another offer at tim@Bis process continues indefinitely until
a player accepts an offer.

If the players reach an agreement at titran a partition that gives playeéra sharex; of the
cake, then playei's payoff is &x;, whered; € (0,1) is playeri’s discount factor. If players never
reach an agreement, then each player’s payoff is zero.

Stationary No-delay Equilibrium

We will first characterize the SPE with the following two pespies, and then show that all SPE
have these properties.

1. (No Delay)All equilibrium offers are accepted.

2. (Stationarity) A player makes always the same offer in equilibrium.

Let x* denote the equilibrium offer by player Given properties 1 and 2, the current present
value of rejecting an offex; is dgxg for player B. This implies that in equilibrium
1— X5 = OBXg- (8.1)
Similarly
1—xg = OaXa. (8.2)

Therefore, there is a unique solution

. 1-%

Xp = 1 o:05 (8.3)
. 1-0p

Xg = 1 3:0n (8.4)

Thus, there exists at most one SPE satisfying the two piieperBut we still have to verify
there exists such an equilibrium. Consider the strategfl@re,, ;) defined as

Player A: Always offerxy, accept anykg with 1 —Xxg > daXy

Player B: Always offerxs, accept anyga with 1 —xa > dpXg.

Before we prove that this strategy profile is a SPE we statéottoaving proposition

Proposition 8.1. (One-Deviation Property). Letl" be a finite horizon extensive form game with
perfect information. The strategy profile is a SPE of” if and only if for every player € N and
for every subgame g of, in which player i moves at the initial node of g there exigigrofitable
deviation by player i which differs fronf snly in the action specified at the initial node of g
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Remark8.1 Itis possible to show that if the payoffs of afinite horizon game satisfies a certain
regularity condition (continuity at infinity: see Fudenppeand Tirole, 1991, p. 110), then the
one-deviation property holds for infinite horizon games a#.jv

Proposition 8.2. One-deviation property holds for the Rubinstein bargajniiame.
Proposition 8.3. (s,,s5) is a SPE of the alternating offers bargaining game.

Proof. Consider any period when A has to make an offer. Her payoffts x,. If A offers
Xa < X3 then
1—Xp > 6BXE

by equation (8.1) and hence B accepts any such offer whigsglva payoff less thaxi. If she
offersxa > Xy, then B rejects and offers;, A accepts giving her a payoff of

0a(1—Xg) < Xp

by equation (8.1). Therefore, there is no profitable oné-dawiation in any subgame starting with
her offer.

Now, consider subgames starting with player A respondifigllalyer A rejects offeixg with
1—xg > daXa, then she will offerx, herself and gedax,. So this is not a profitable deviation.

By a symmetric argument, it follows that player B’s stratégyptimal in every subgame as
well.H

8.1.3 Unigue Subgame Perfect Equilibrium
Theorem 8.1. The strategy profile*sis the unique SPE.

Proof. Let I'; denote any subgame that starts with plaiyeraking an offer. Clearly, all such
subgames are strategically equivalent (since preferem@estationary, i.e., does not depend on
calendar time) and thus all have the same SPEG;, éenote the set of SPE in any subgameand
let!

M; = maxG;,

m = minG;.

Lemma 8.1. There exists a unique SPE payoff profilé afgiven by(x3,1—x,) and a unique SPE
payoff profile ofl o given by(xg, 1 —X5) .

litis possible that ma; and minG; do not exist. For example & = (0,1), maxG; and minG; do not exist.
However, the theorem is still true with max and min replacéth wup (supremum) and inf (infimum).
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Proof of Lemma 5
Claim1l. m >1-93;Mj,i#j.

Proof of Claim 1.First note that player B accepts any offarsuch that - xa > dgMg. So,
if there exists an equilibrium df 5 yielding uxy < 1— dgMg, player A can profitably deviate from
such an equilibrium by offeringa such thaua < xa < 1— dgMs. ||

Claim 2. M; < 1—6jmj, i .

Proof of Claim 2. Player B rejects any offer which gives her less tidgmg and following
rejection she never offers more thdxMa. Therefore,

Ma<max{ 1-3mg , &Ma
N— e’ N——"

max when B acceptsnax when B reject

and hence
Ma < 1—dgmg.

Claims 1 and 2 imply that

ma > 1— Mg (8.5)
mg > 1— 5AMa (8.6)
Ma < 1— SgMg (8.7)
Mg < 1—dama (8.8)

From 8.6 we get
—ogmg < —53(1— 5AMA)

and
1-gmp<1-0g (l— 6AMA)

which together with 8.7 implies that
Ma <1-—03g(1—0aMa)

or
1-0%s

1—0a08

Ma < (8.9)
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By 8.8 we have
1-%Mg>1-0g (l— 6AmA)

which together with 8.5 implies that

ma > 1- 53(1— 6AmA)

or 1- 5
M2 7= (8.10)
SinceMa > mp, 8.9 and 8.10 imply that
Mp = mp = 11_ _5228. (8.11)
Similarly,
Mg = mg = 11—_6/?23' (8.12)

Therefore, the unique payoff profile s is (x3,1—xa) and the unique payoff profile ifig is
(g, 1—xg).|

We can now complete the proof of the theorem by using Lemma B. fik&t show that all
equilibrium offers are accepted in any SPE. Suppose théstsexSPE in which player As offer is
rejected. By Lemma 5, A's equilibrium payoff in this subgaise,. But by Lemma 5, A's payoff
in subgame following rejection isl — xi), and hence, the equilibrium payoff of A in the subgame
in which her offer is rejected must 8 (1 —xg) . But, this implies

Xa = B (1—x5) = B3Xa,
a contradiction. Similarly, player B’s equilibrium offensust be accepted.

Second, we show that in all SPE A offe¢sand B offerss;. Suppose A offerga > X, in a SPE
of al'a. This offer must be rejected by B in equilibrium, becausepilise B would get less than
1—x, in that subgame which contradicts Lemma 5. This, in turnfrealicts that no equilibrium
offer is rejected. Now suppos@ < X, in a SPE of & a. This offer, too, must be rejected by B,
because otherwise A would get less therin that subgame, contradicting Lemma 5. So, A must
be offeringxy in all SPE. Similarly, B must always be offering.

Since there is a unique SPE satisfying these propertiespasgin Proposition 3, the proof is
completell
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8.1.4 Properties of the Equilibrium

(1) Equilibrium is Unique and Efficient

This is the case fod; < 1. That is, there has to be some friction. Otherwise there £x@st
continuum of equilibria, including inefficient ones.

(2) Bargaining Power

Note that the share of player A in the unique SPE is

o 1-3

T =X = 15,05
and that of B is 55 (1— 55)
_q_ 98170
Te=1-X = 53

and hence the share of playes increasing ird; and decreasing id;. The bargaining power comes
from patience. The more patient a player is, the higher haresh
If the payers are equally patient, i.85 = dg = 9, then
1 o

M= s>

116 116 ®

In other words, there is a first mover advantage.
The first mover advantage disappearas 1.

[im 1 =
o—1

lim 1 =
o—1

NI NI

(3) Relationship with Nash Bargaining Solution
Let
S={(MaTe) €RY i A+ T < 1}.

Then, a®® — 1, the SPE of the Rubinstein game converges to the Nash bargadalution, i.e.,

(Thy, T) = arg MaxXmaT.
TeS
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Chapter 9

Repeated Games

9.1 Motivation

Many interactions in the real world have an ongoing struectaind in many such situations
people consider their long-term payoffs in addition to thersterm gains. This might lead people
to behave in ways different from how they would if the intdiags were one-shot rather than
long-term. Consider the following prisoners’ dilemma game

C D
cl22]03]
D[30]11

Remember that in this game defecti(ig) for both players is the unique Nash equilibrium (and
also the strictly dominant strategy equilibrium). So, istgame is played only once, game theory
strongly suggests that the outcome will (i D) , which is suboptimal, since the cooperative out-
come(C,C) gives both players a strictly higher payoff. However, iftiyame is played repeatedly
between two players, then they may be inclined to cooperatiger than defect, if they think they
will be punished in the future for defecting.

Theory of repeated games analyzes the types of outcomesibeland norms that can be sup-
ported as Nash equilibrium or and subgame perfect equitiboutcomes in repeated interactions.
Rather than presenting this large body of literature, wé pvié¢sent some examples and indicate
how they generalize to other repeated interactions.
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9.2 Preliminaries

LetG= (N, (A),(u)) be am-player finite strategic form gam#/e will call G thestage game.
For exampleG might be the prisoners’ dilemma (PD) game given above.

An infinitely repeated gameis defined by the following elements. The stage game is played
at each discrete time peridd=1,2,..., and at the end of each period the action choice of each
player is revealed to everybody. story in time periodt is simply a sequence of action profiles
from period 1 through periot— 1, i.e.,

h'=(aa',a?,....d™ 1), fort=1,2,...

where we take’to be the empty history (i.e., nothing has happened so Far example, in the
PD game a possible fifth period history(i&’, (C,C), (C,C),(D,C),(D,D)). We will usually omit
the empty history in this specification as a convention, anitew(C,C),(C,C),(D,C),(D,D)).
The set of period histories is then given by

Hi= A" fort=1,2,...
where we again sé® = a°. The set of all second period histories in PD game is

HZ=A
= {(C’C) ) (C’D)’(D’C) ) (D’D)}

and the set of all period three histories is

H3=A2=AxA
={(C,C),(C,D),(D,C),(D,D)} x{(C,C),(C,D),(D,C),(D,D)}

etc.. A history is terminal if and only if it is infinite. In o#r words a terminal history is in the form
of (ao,al,az, .. ) . Notice that each nonterminal history starts a subgame iretheated game.

After any nonterminal history each playier N simultaneously chooses an actiordin There-
fore, apure strategy s of playeri is a sequence of functions that assign an actiof; ito every
history h'; s (ht) denotes the action choice of playieafter historyht. Therefore, a strategy for
playeri is given by



9.2. Preliminaries 109

For example, in the PD game a strategy may specify

s (a”) =Cand
C, ifa=¢C, j#ifort=212,...,t-1
S(ao,al,...,at_l) _ ’ i ) ) 17& ) 1Er '
D, otherwise

This strategy instructs playeto start with playingC and continuing doing so unless the opponent
has played in the past, in which case, playeplaysD forever. (This strategy is also called
grim-trigger strategy, because defection is triggered by the oppongefection and grim because
punishment is unrelenting). We denote the set of all pusdegies for player by §. The set of

all strategy profiles are denot&l A strategy profiles= (si,...,S) induces a terminal history in
the obvious manner. For example, if both players adopt time-tyigger strategy defined above the
outcome will be cooperation every period.

The last thing that we have to definepayoff functions. Since, only histories are the infinite
histories and each period’s payoff is the payoff from thgestgame, we have to describe how
players evaluate infinite streams of payoffs (a'),u; (a®),...). Although there are alternative
specifications in the literature, we will concentrate ondhee of discounting, where players dis-
count the period payoffs using a discount faddar (0,1). The payoff of playei to the infinite
sequencdal,a?,...) is given by

1-8)5 51 (a).
(1-8)3 8 u(d)

The normalization factofl — &) serves to measure the stage game and the repeated game payoff
in the same units. For example, the payoff to perpetual aatipa is given by

1-3)Fdtx2=2
4
The payoff of player induced by strategy profileis given by
U@ =1-58)Y oy (a
29 (a)

wherea is the period action profile if players comply with the strategy profdeFor example, if
both players play according to the grim-trigger strategyfif#, then period action profile will be
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a = (C,C)forallt=1,2 ..., and hence
U(s)=(1-9) Ztst—lui (C,C)

t=
=(1-9) Z\é“l x 2
t=

=2

if sis the grim-trigger strategy profile. Notice that each higtstarts a new subgame, and hence
for any strategy profils and historyh', we can compute the players’ expected payoffs from period
t onward. We call these theontinuation payoffs and renormalize so that the continuation payoffs
from periodt on are measured in periadinits:

Ui (slht) = (1-3) Z &ty (&)

1=

if the strategy profilesinduces the sequence of actiof@™*,a*2,...) starting from histonyht.
Let us denote the resulting infinitely repeated gamé&py

9.3 Equilibria of Infinitely Repeated Games
Definition. The strategy profilsis aNash equilibrium of the repeated gan®; if for all i € N
Ui(s,s.i) > Ui (g,s) forall§ € S.

Let us consider some of the Nash equilibria of the PD gamset &frall, payingD after history
is clearly a Nash equilibrium. This is because whatever ymwdur opponent will playp, and the
best response 0 is D as well. Secondly, let us check if the grim-trigger stratpgdfile is a Nash
equilibrium.

Suppose player 2 adopts the grim-trigger strategy. If pldyalso follows the grim-trigger
strategy then the outcome will be cooperation every period

(C,0),(c0),...,(C,0),(CL),...
with the resulting payoff sequence

2,22 2,2,2

PEYEY ) ) P
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whose average discounted value is
1-8) T3 cCceo)=1-9F&dIx2=2
&% 2

Now, consider the best possible deviation for player 1. kmhsa deviation to be profitable it
must result in a sequence of action profiles which has defedty some players in some period.
This, in turn, implies that player 1 must be defecting at sqaeod (since player 2 is following
grim-trigger she will not defect unless player 1 defectethapast). LeT +1, T =0,1,..., be the
first period in which player 1 defects. Therefore, we havedhlewing sequence of action profiles
until periodT + 1

(C,0),(c,0),...,(C,C), (D,C) .

~——

T times periodT+1

Since player 2 is following the grim-trigger strategy shé play D in periodT + 2 and after. Well,
the best thing that player 1 can do in that case is to plastarting from periodrl 4 2 as well.
Therefore, the best deviation by player 1 generates theWoily sequence of action profiles

(c,0),(.0),...,(c.0), (b,C) ,D,D),(D,D),...
N——
Ttimes periodT+1

and the following sequence of period payoffs

2,2,...,2, 3 ,11,...
—_——
Ttimes T+1

The average discounted value of this sequence is

(1-8) [2+82+0%2+... 48" 12+8"3+8" 14872+ ]
=2+8" —25""L

You can check to see that®> 1/2, this is smaller than or equal ta Zherefore, if players are
patient enough, i.e., § > 1/2, then grim-trigger strategy profile is a Nash equilibriumrdfnitely
repeated PD game.

Definition. The strategy profile is asubgame perfect equilibriumof the repeated gam@; if
foralli € N and allht € H

Ui (s,s.ilh) > Ui (&, i) forall § € S.
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Proposition 9.1 (One-Shot Deviation PropertyA strategy profile sis a SPE of G if and only
if no player can gain by changing her action after any histdeyeping both the strategies of the
other players and the remainder of her own strategy constant

Now, we have the one-deviation property at hand we may aealyz SPE of the repeated
prisoners’ dilemma game. Let us first consider a finitely aépe version. By backward induction
it is easy to see that the only SPE in this case is defeciyreyery period. This is becausB,is
strictly dominant in the last periofl and hence both players pl&yafter any historyh". Now, in
periodT — 1 neither player can gain in periddby cooperating, and they loose in period- 1, so
that play inT — 1 will be defection as well after any histoh/ ~%. Continuing in this manner we
have that both players will pla after every histonht,t =1,2,..., T, in the unique SPE. [It turns
out that this also the unique Nash equilibriwutcome Prove this as aaxercise.

Let us now consider the infinitely repeated version. One SRjiven by

s(h) =D, forallt=12,...

fori =1,2. This clearly is subgame perfect (check using the one-shaatilen property).

Now, let us consider the grim-trigger strategy. We have teckhwhether the grim trigger
strategy satisfies the one-shot deviation property afterygrossible history. Consider the history
h? = (C,D), i.e., in the first period player 2 defected. Let's see if pta&§/bas a profitable one-shot
deviation. If player 2 plays according to the grim-triggaagegy, given that player 1 sticks to that
strategy as well, the following sequence of action profildsresult (starting from period 2)

(b,C),(D,D),(D,D),...

with the sequence of payoffs
0,11,...

whose average discounted valud.isf she deviates and play3in the second period (after history
(C,D)), keeping rest of her strategy the same, she will get a paydff@fery period, which has
an average discounted value of 1. Therefore, this is a potditdeviation sincéd < 1, and the
grim-trigger strategy profile is not a subgame perfect doyitim.

We may, however, modify the grim-trigger strategy slighalyd obtain a SPE. This strategy
profile, which we will call grim-trigger 1l, is given by

C, t=1
s (h")=<¢ C, h=((C,C),(C,C),...,(CC))
D, otherwise
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fori =12 The difference in this strategy is that, a player defectsefe is a defection in the past
independent of the identity of the defector. We claim #idt a SPE for ald > 1/2.

Proof. Consider all histories of the typeé = ((C,C),(C,C),...,(C,C)), i.e., all histories
without any defectionFor player 1, the conditional payoff to playirsyis

Uy (s'lh') = (1-9) Zaf—t x2=2.
=
One-shot deviation t® at periodt gives

(1-8) [u1(D,.C)+8+8*+...] =(1-8)3+8
—=3-25
<2

for all > 1/2. Similarly, letht be a history other thaf(C,C), (C,C),...,(C,C)). Then,

0

Uy (s'h') = (1-9) ZBH x1=1
=
whereas deviating and playiigjin periodt gives

(1-8) [u (C,D)+8+8+...] =(1-8) x (0) +3x 1
=3
<1

Similar considerations for player 2 shows tkats a SPE|

The grim-trigger strategies are very fierce in their puniehts, they never forgive. We will
now demonstrate that more forgiving strategies can sutieirtooperative outcome in a SPE as
well. In thisforgiving trigger strategy players start wittC and they playC as long as everybody
has playedC in this past. If anybody play® at any period, then both players plByfor k periods.
After k periods of punishment both players return to play@hgntil someone deviates again.

Suppose the game is in the cooperative phase, i.e., eitl@dpcas deviated so far or the
deviations that have occurred have already been punishechawé to check whether there exists
one-shot profitable deviation in this phase. Suppose pj@iows the forgiving trigger strategy.

If player 1 follows that strategy as well the outcome will (& C) forever after with an average
discounted payoff of 2If player 1 deviates td once and then follows the strategy, then the
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following sequence of actions will result

(D,C),(D,D),(D,D),...,(D,D),(C,C),(C,C),...

ktimes

with the following average discounted payoff
(1-5) [3+5+52+...+6k+25k+1+25k+2+... — 325+
Therefore, there is no profitable one-shot deviation in thaperative phase if and only if
3-25+3%t<2

or
Sl _25+1<0.

If, for example k = 1, then this condition is equivalent to
¥ —-254+1=(3—-1)°<0

which can never hold sincé < 1. If, however, k = 2, then the condition will be satisfied for
anyd > 0.62. In general, as the length of the punishment phase incretimegwer bound o
decreases and converges J@ hsk — .

We also have to check if there is a profitable one-shot dewiaith the punishment phase.
Suppose there ar€ < k periods left in the punishment phase. If player 1 complieth whe
forgiving trigger strategy the following action profileslitie realized

(D,D),(D,D),...,(D,D),(C,C),(C,C),...

k' times

and if she deviates once at the beginning

(C,D),(D,D),...,(D,D),(C,C),(C,C),...

k' times

Clearly, following the forgiving trigger strategy is batia the punishment phase.

So far we have analyzed only the PD game to illustrate sonteeafsults that can be obtained
in repeated games. The repeated games literature conalllpassible games and characterizes
the set of possible outcomes that can be obtained in the Npslibea or SPE of repeated games.
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Results, known as “folk theorems”, have shown that virtually outcome can be supported as a
Nash and SPE outcome in infinitely repeated games, provigddhe players are patient enough.

Let us consider another example, this time from industiighnization theory. Consider a
Cournot duopoly model with inverse demand function

- <
P(Q)z{ N

whereQ = Q1 + Q2 and cost function€; (Q;) = cQ;, i = 1,2. The profit function of firmi is given
by
Ui (Q1,Q2) = Qi (P(Q1+Q2) —c¢).

Consider the following grim-trigger strategy. Producef il monopoly output in the first period
and as long as everybody has produced that amount so farwitberoduce the Cournot output.
As an exercise verify that this is a SPE.
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Chapter 10

Auctions

Many economic transactions are conducted through auctidogernments sell treasury bills,
foreign exchange, publicly owned companies, mineral sigahd more recently airwave spectrum
rights via auctions. Art work, antiques, cars, and housesalo sold by auctions. Government
contracts are awarded by procurement auctions, which aceusled by firms to buy inputs or to
subcontract work. Takeover battles are effectively anstias well and auction theory has been
applied to areas as diverse as queues, wars of attritioriphhying contests.

There are four commonly used and studied forms of auctions:

1. ascending-bid auctiotfalso called the open, oral, or, English auction): the pisceised
until only one bidder remains, and that bidder wins the da¢the final price.

2. descending-bid auctiofalso called Dutch auction): the auctioneer starts at a lvigity price
and lowers it continuously until someone accepts the ctirannounced price. That bidder
wins the object at that price.

3. first-price sealed bid auctioreach bidder submits her bid in a sealed envelope withouigee
others’ bids, and the object is sold to the highest biddeeabid.

4. second-price sealed bid aucti¢also known as Vickrey auctiéh Bidders submit their bids
in a sealed envelope, the highest bidder wins but pays tlendddghest bid.

Auctions also differ with respect to the valuation of thedsds. In aprivate value auction
each bidder’s valuation is known only by the bidder, as itlddae the case, for example, in an

1For a good introductory survey to the auction theory see Rimhperer (1999), “Auction Theory: A Guide to the
Literature,”Journal of Economic Survey$3(3), July 1999, pp. 227-286.
2Named after William Vickrey of Columbia University who wasarded the Nobel Prize in economics in 1996.
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artwork or antique auction. In@mmon value auctigrthe actual value of the object is the same
for everyone, but bidders have different private informiatiegarding that value. For example, the
value of an oil tract or a company maybe the same for everylbotylifferent bidders may have
different estimates of that value.

We will analyze sealed bid auctions, not only because theysempler to analyze but also
because in the private values case, the first-price sealelibtion is strategically equivalent to de-
scending bid auction and the second-price sealed bid austgtrategically equivalent to ascending
bid auction.

Figure 10.1: Auction Types

OPEN-CRY SEALED-BID
English Auction NS Second Price
Dutch Auction NN First Price

10.1 Independent Private Values

Previously, we have looked at two forms of auctions, nametgt Price and Second Price
Auctions, in a complete information framework in which editider knew the valuations of every
other bidder. In this section we relax the complete inforamaassumption and revisit these two
form of auctions. In particular, we will assume that eachdbidknows only her own valuation,
and the valuations are independently distributed randaotablas whose distributions are common
knowledge.

The following elements define the general form of an auctiat we will analyze:

 Set of biddersN = {1,2,...,n},

and for each e N
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a type set (set of possible valuation®),= [v,v], v > 0.

 an action seth; = R, (actions are bids)

a belief function: playei believes that her opponents’ valuations are independentdr
from a distribution functiorf that is strictly increasing and continuous ferv] .

« a payoff function, which is defined for aryc A, v € © as follows

—P . . .
b (ay) = y-P@) !fajgaiforallj;é_l,a_1nd|{J.aj:a4}|:m
0, if a; > & for somej # i

whereP (a) is the price paid by the winner if the bid profileasNotice that in the case of a
tie the object is divided equally among all winners.

10.1.1 Second Price Auctions

In this design, highest bidder wins and pays a price equdle®écond highest bid. Although
there are many Bayesian equilibria of second price augctioidsling own valuationy; is weakly
dominant for each playear To see this lek be the highest of the other bids and consider bidding
a <wi, vi, anda’ > v;. Depending upon the value af the following table gives the payoffs to
each of these actions Iy

X<y g <X<Vi Xx=V vi<x<a  oa<x
a | win/tie;payx | lose lose lose lose
Vv, | win; payx win; payx | tie; payv; | lose lose
a’ | win; payx win; payx | win; payv; | win/tie;payx | lose

By bidding smaller thary;, you sometimes lose when you should wa € x < v;) and by
bidding more thaw;, you sometimes win when you should lose % x > v;).

10.1.2 First Price Auctions

In first price auctions, the highest bidder wins and pays herlket us denote the bid of player
with type v; by Bi (vi) and look for symmetric equilibria, i.eBi(v) = B(v) for all i € N. First,
although we will not attempt to do so here, it is possible tovsithat strategie§; (vi), and hence
B(v), are strictly increasing and continuous wv].(seeFudenberg and Tirole, 1991). So, let’s
assume that they are, and check if they are once we locates#lgosquilibrium.
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The expected payoff of player with typevho bidsb when all the others are bidding according
to B is given by

(v— b) prob(highest bid ish) = (v— b) (prob(B(v) < b))"*
= (v—b)F (B (b))" .
(Becausey; are independently distributed). The first order conditionrhaximizing the expected
payoff is

1
F' (B () 5—s =0.
(B0 g arm)
by the fact tha3 is almost everywhere differentiable (since it is stricthgrieasing), and by the
inverse function theorem. F@(v) to be an equilibrium first order condition must hold when we

substitutef (v) for b,

n—2

~F(B()" "+ (v=b) (n—1F (B7(b))

—F " (v=B(V) (- 1)F (v)"F'(v) B 0,
or
BMFW"™ +(-1)BWVF WF V"= n-1)vF (VF ()"

which is a differential equation if. Integrating both sides, we get

B(V)F(v)”1:/\/V(n—1)xF(x)”2F’(x)dx

= VF (W) - /VF (x)"tdx.

v

Solving forf3(v),
o IF ()" dx
B(v) =v— O

One can easily show th@tis continuous and strictly increasing ¥nas we hypothesized. Fur-
thermore, notice thed (v) = v, but3(v) < v for v > v. That is, except the player with the lowest
valuation, everybody bids less than her valuation. As amcise let's calculat@ assuming- is
uniform on[0,1], i.e.,F (X) = x.
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Uniform example solved explicitly: Let’s look for a symmetric equilibrium of the form
B(v) = av. The expected payoff of player with typewho bidsb when all the others are bidding
according td3 is given by

(v— b) prob(highest bid ish) = (v— b) (prob(av < b))"*
= (v—b)(b/a)" .

The first order condition for maximizing the expected pay®ff
(v—b)(n—1)=bh,

which is solved at

10.1.3 All-Pay Auctions

Consider an auction in which the highest bidder wins theiandiut every bidder pays his/her
bid. This model could model bribes, political contests, i@hyc competition, war-of-attritions, etc.
Again, let’s look for a symmetric equilibriung; (v) = 3(v) for all i € N.The expected payoff of
player with typev who bidsb when all the others are bidding according3tcs given by

v x prob(highest bid i) —b = v x prob(B(v) <b)"™*—b
n-1

=vF(Bt(b) —b

Let F beuniform over|0,1]. Then, this becomes
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or

B'(v) = (n-1v*t
which is a differential equation if. Integrating both sides, we get
\%
B(V) :/ (n—1)x"Tdx
0

(n—1)
n

v

Notice that as increases the equilibrium bid decreases.

10.2 Revenue Equivalence

In second price auctions each bidder bids her value and paysetcond highest. Therefore,
the expected revenue of the seller is the expected secohdshigalue. In a first price auction, the
highest bidder is the one with the highest value and bids etifumof her value, which ié;‘;—lvmax
in our example above. Therefore, the seller's expectechrgvén a first price and a second price
auction depends on the expectation of the highest and tbadddighest value, respectively. Given
that there are bidders who each has a value (drawn independently from a @conahstribution),
what are the expected values of the highest and second higtlees? Order statistics provide the
answer.

Order Statistics

Suppose that is a real-valued random variable with distribution funotf® and density func-
tion f. Also suppose that independent values are drawn from the same distributiooro fa
random samplévy, Vo, ..., Vq). Let vy, denote thekth smallest of(va,Vvz,...,vn) and call itkth
order statistic In particularv(, is the highest angl,_1) is the second highest order statistics. Let
F« denote the distribution function ofy. Let's start with the distribution function o).

Fn (X) = prob(v(n < x) = prob(all v < x)
=[F (]".

Similarly,

Fro1(X) = prOb(V(nfl) < X)
= prob(eithernor (n—1) of v's are < X)
= [F ()" +n(1—F () [F ()"
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In general,

Fx (X) = prob(vk < X)
= prob((number ofv’s that are< x) > k)

n I,]|

— zkijl(n.— j)IF(x)j(l—F(X))”*j
& .

Hence, ifF is uniform on[0, 1], i.e.,F (X) = x, we have

Fa() = X", Foo1 () =X"+n(1-x)x""*
fn(x) = n)éﬁ'*l’ fio1(X) = (n—1) n(l_X)anz'

Therefore,
1
E[v(n)]:/ xnX*~tdx
0
~n
n+1
and

T n+l
Now, in a second price auction the expected revenue is thectegh second highest value

n—1
E[R] =E[Vn-y] = FE

and the revenue in the first price auction is the expected fhideobidder with the highest value,
ie.,

E[Ri] = n%lE[V(n)]

Therefore, both auction forms generate the same expectedues. This is an illustration of
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therevenue equivalence theorem

Theorem Any auction with independent private values with a commatrittiution in which

1. the number of the bidders are the same and the bidderskneaitral,
2. the object always goes to the buyer with the highest value,

3. the bidder with the lowest value expects zero surplus,

yields the same expected revenue.

Therefore, all four types of the auctions yield the same etquerevenue for the seller in the
case of independent private values and risk neutrality.s THeorem also allows us to calculate
bidding strategies of other auctions. An all-pay auctiongkample, satisfies the conditions of the
theorem and hence must yield the same expected revenue.

10.3 Common Values and The Winner’s Curse

In a common value auction, bidders have all the same valued=nh bidder only observes a
private signal about the value. Therefore, if a bidder wiresduction, i.e., is the highest bidder, it
is likely that the other bidders received worse signals tharwinner. In other words, the value of
the object conditional on winning is smaller than the undtioill expected value. If this is not
taken into account, then the winner might bid an amount nwaa the actual value of the object,
a situation known as th&inner’s curse.

As an example suppose= t; +t,, wherev is the common value but biddémbserves only
the signatt;. Assume that eacth is distributed independently and has a uniform distributiwer
[0,1]. This, for example, be a takeover battle where the value ofstifgeet company is the same but
each bidder obtains an independent signal about the valygpoSe that the auction is a first-price
sealed bid auction. Denote the strategieditfty) and look for an equilibrium in whichy; (t;) = at;.
The expected payoff of player 1 given that player 2 bids atiogrtob, (t2) = at; is given by

U, (b]_,t]_) = E[V— b]_ | b]_ > bz] pl’Ob(bl > bz)
E[t1+t2 —b | by > atz] pl’Ob(b]_ > a.tz)
E

[t1+tx— by | t2 < bg/a]prob(t; < by/a)
b
(ti+E[t2 | to < by /a] —bl)gl

B by by
= <t1+ 2a bl) a
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First order condition is

6U1(b1,t1) o b1 1 b 1 .
oby tlJrZa by a+a 2a 1)=0

1
2(1—%> by =1t;.

Forb; = at; to be optimal we must have

1
2(1-——)ay =t
(i La-,

which implies that = 1. Thereforeb; () =t; is a Nash equilibrium.

which implies that

As a comparison consider the independent private valuesvadasrev; = t; + 0.5. Note that this
is the expected value in the above model conditional upoerelmgy t; (but not conditional upon
winning). Let’s look for an equilibrium of the forr; (t;) = at 4 c. The expected payoff of player
1 to biddingb; given that player 2 is using the strategty + cis

Ul(bl,tl) = E[V— bl]prob(bl > bz)
= E[t; + 0.5— bs] prob(b; > at, + )

= (t1+0.5—by) prob (tz < bl; C)

bi—c

= (tl +0.5- b]_)

if a<b; <a+c. Assume that this holds. Then, the first order condition is

o0U; (bl,tl) o bi—c 1 o
ab]_ = a —I—(t1—|—0.5 b]_)a—o

which is solved at

1 1
b = =c4 =t; +0.25.
1 20+21+

Forbs (t1) = at; + c to be optimal, we must have

1 1
—Cc+=t1+0.25=at; +c¢
5 +21+ 1+C,
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which implies thata = 0.5, c = 0.5. Therefore,

bi(th) ==+

)

NS NE
NI~ NI~

b2 (t2) = 5 +

constitutes a Bayesian Nash equilibrium (indeed the unapuelibrium) of this auction. (Notice
that this satisfies that above restricti@ar by < a+ cfor all t;.) Also note that

b + Loy

2 2-1
for all t; € [0,1], hence there is always underbidding in common value auctibms reason is that
the expected value of the object is smaller conditional ugoming in common value auctions,

whereas this value does not depend on the event of winningtawinning.

10.4 Auction Design

The auctioneer may have different objectives in designimguction. The government which
is privatizing a company, for example, might want to geresthte highest revenue from the auc-
tion, or might want to make sure that it is efficient, i.e.,ttthte company goes to the bidder with
the highest valuation for it, or to a bidder with some otheairalsteristics. Auction theory helps
in designing auctions by comparing different auction foismia terms of their equilibrium out-
comes. For example, if the objective is to generate the kiglevenue, then different auction
formats may be compared on the basis of the expected equifimevenues to find the best one.
In the case of private, independent values with the same auoflrisk neutral bidders, revenue
equivalence theorem says that the format does not mattemass the reserve price is set right.
Therefore, the cases where the values are correlated (as @ase of common value auctions), or
the bidders are risk averse, auction design becomes amfiakdematter. In practice, collusion and
entry-deterrence also becomes relevant design probleroBus®n is relevant because revenue
equivalence does not hold if there is collusion. Also, rerbenthat the expected revenue from an
auction increases in the number of bidders even when thauewequivalence holds, and hence the
auctioneer has an incentive to prevent entry-deterrence.

10.4.1 Need for a Reserve Price

If there is only one bidder who comes to the auction, the seliénot make any money, unless
she sets a reserve price. What is the optimal reserve pribéRisIsimilar to the case where the
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seller is a monopoly and tries to find the optimal price. Assgnthat the costs are sunk and
therefore the total payoff of the seller is given by the totalenue, the expected payoff is given by

E[R(p)] = prob(sale occurs at pricp) x p
= prob(p<vVv)xp
=(1-F(p)p.

This is maximized when

—f(p)p+(1-F(p)=0
! C1-F(p)
P= "%

So, if F is uniform over [0,1],
_1-p
P=1
which implies thatp = 1/2. So, an optimal auction must set a reserve price ®i®this particular

case.

10.4.2 Common Values

We have seen above that first-price sealed bid auction ledda¢r bids in the case of common
value auctions. In general, if the signals received by tbddais are positively correlated, ascending
auction raises more expected revenue than the secondseaéed bid auction, which in turn beats
the first-price auction.

10.4.3 Risk-Averse Bidders

In a second price auction risk aversion does not matterttie bidders always bid their values.
In a first-price auction however, an increase in risk aversads to higher bids since it increases
the probability of winning at the cost of reducing the valdeminning. Therefore, a risk-neutral
seller faced with risk-averse bidders prefers the firstgoor (descending) Dutch auction to second-
price or (ascending) English auctions.

10.4.4 Practical Concerns

3

3This part is based on Paul Klemperer, "What Really Matterstntion Design,"Journal of Economic Perspectives
2002, 16(1), 169-189.
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Collusion

A major concern in practical auction design is the possjhiliat the bidders explicitly or tacitly
collude to avoid higher prices. As an example consider airanlt (simultaneous) ascending
auction. In such an auction, bidders can use the early stelyes prices are still low to signal who
should win which objects, and then tacitly agree to stop imgsprices up.

» 1999 Germany spectrum auction: any new bid must exceedréwviops one by at least 10
percent. Mannesman bid 18.18 mil. on blocks 1-5 and 20 miblocks 1-6 (18.1& 1.1~20).
This was like an offer to T-Mobil (the only other credible dét) to bid 20 mil. on blocks
1-5 and not bid on blocks 6-10. This is exactly what happened.

» 1996-97 U.S. spectrum auction: U.S. West was competingreigsly with McLeod for lot
number 378 - a licence in Rochester, Minnesota. U.S. Wes$®13,378 and $62,378 for
two licences in lowa in which it had earlier shown no interesterbidding McLeod who
had seemed to be the uncontested high-bidder for thesesdéseiMcLeod got the point that
it was being punished for competing in Rochester, and dibups of that market. Since
McLeod made subsequent higher bids on the lowa license$ptiméshment” bids cost U.S.
West nothing

» Arelated phenomenon can arise in one special kind of sdateduction, namely a uniform-
price auction in which each bidder submits a sealed bidngtatihat price it would pay for
different quantities of a homogenous good, e.g., eletyrighat is, it submits a demand
function), and then the good is sold at the single price ddterd by the lowest winning
bid. In this format, bidders can submit bids that ensure éingt deviation from a (tacit or
explicit) collusive agreement is severely punished: eaddds bids very high prices for
smaller quantities than its collusively agreed share. Tihany bidder attempts to obtain
more than its agreed share (leaving other firms with lessttiginagreed shares), all bidders
will have to pay these very high prices. However, if everystieks to their agreed shares
then these very high prices will never need to be paid. Soatlewi from the collusive
agreement is unprofitable. The electricity regulator in thdted Kingdom believes the
market in which distribution companies purchase eletyritom generating companies has
fallen prey to exactly this kind of “implicit collusion.”

Much of the kind of behavior discussed so far is hard to chghelegally. Indeed, trying to
outlaw it all would require cumbersome rules that restriddbrs’ flexibility and might generate
inefficiencies, without being fully effective. It would beuth better to solve these problems with
better auction designs.
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Entry Deterrence

The second major area of concern of practical auction ddsigo attract bidders, since an
auction with too few bidders risks being unprofitable for #hetioneer and potentially inefficient.
Ascending auctions are often particularly poor in this e$psince they can allow some bidders
to deter the entry, or depress the bidding, of rivals. In asemding auction, there is a strong
presumption that the firm which values winning the most welthe eventual winner, because even
if it is outbid at an early stage, it can eventually top anyagifion. As a result, other firms have
little incentive to enter the bidding, and may not do so ifythave even modest costs of bidding.

» Glaxo’s 1995 takeover of the Wellcome drugs company. ABrxo’s first bid of 9 billion
pounds, Zeneca expressed willingness to offer about lidrbijounds if it could be sure
of winning, while Roche considered an offer of 11 billion pds. But certain synergies
made Wellcome worth a little more to Glaxo than to the othendirand the costs of bidding
were tens of millions of pounds. Eventually, neither RocheZeneca actually entered the
bidding, and Wellcome was sold at the original bid of 9 billipounds, literally a billion or
two less than its shareholders might have received. Webtoown chief executive admitted
“...there was money left on the table”.

Solutions

Much of our discussion has emphasized the vulnerabilitysoEading auctions to collusion
and predatory behavior. However, ascending auctions hessra virtues, as well.

» An ascending auction is particularly likely to allocatee thrizes to the bidders who value
them the most, since a bidder with a higher value always feasghortunity to rebid to top
a lower-value bidder who may initially have bid more aggresdy.

« If there are complementarities between the objects fa, samulti-unit ascending auction
makes it more likely that bidders will win efficient bundldgh in a pure sealed-bid auction
in which they can learn nothing about their opponents’ ititers.

* Allowing bidders to learn about others’ valuations durithg auction can also make the
bidders more comfortable with their own assessments asathsgious, and often raises the
auctioneer’s revenues if information is correlated.

A number of methods to make the ascending auction more rabasiear enough. For exam-
ple, bidders can be forced to bid “round” numbers, the exaaeiments can be prespecified, and
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bids can be made anonymous. These steps make it harder taage bignal other buyers. Lots
can be aggregated into larger packages to make it hardeididens to divide the spoils, and keep-
ing secret the number of bidders remaining in the auction mlakes collusion harder. But while
these measures can be useful, they do not eliminate theofiskdlusion or of too few bidders. An
alternative is to choose a different type of auction.

In a standard sealed-bid auction (or “first-price” seal@bduction), each bidder simultane-
ously makes a single “best and final” offer, so collusion iscmiarder than in an ascending
auction because firms are unable to retaliate against lsidd®o fail to cooperate with them. Tacit
collusion is particularly difficult since firms are unableuse the bidding to signal.

From the perspective of encouraging more entry, the merdt gfaled-bid auction is that the
outcome is much less certain than in an ascending auctionad&antaged bidder will probably
win a sealed-bid auction, but it must make its single finagwiifi the face of uncertainty about its
rivals’ bids, and because it wants to get a bargain its seaitbavill not be the maximum it could
be pushed to in an ascending auction. So “weaker” bidders Aaleast some chance of victory,
even when they would surely lose an ascending auction.ldwfslthat potential entrants are likely
to be more willing to enter a sealed-bid auction than an alngrauction.

A solution to the dilemma of choosing between the ascendifigr{ called “English”) and
sealed-bid (or “Dutch”) forms is to combine the two in a hgbrihe “Anglo-Dutch”, which of-
ten captures the best features of both, and was first dedaaite proposed in Klemperer (1998.
“Auctions with Almost Common Values.” European Economio/iRer. 42, pp. 757-69.).

In an Anglo-Dutch auction the auctioneer begins by runningascending auction in which
price is raised continuously until all but two bidders havepped out. The two remaining bidders
are then each required to make a final sealed-bid offer thadtisower than the current asking
price, and the winner pays his bid.

Good auction design is not “one size fits all” and must be sgadb the details of the context.



Chapter 11

Extensive Form Games with Incomplete
Information

11.1 Introduction

So far we have analyzed games in strategic form with and witinm@complete information, and
extensive form games with complete information. In thistisecwe will analyze extensive form
games with incomplete information. Many interesting sigat interactions can be modelled in this
form, such as signalling games, repeated games with in@ejiformation in which reputation
building becomes a concern, bargaining games with incampiéormation, etc.

The analysis of extensive form games with incomplete inédiom will show that we need
to provide further refinements of the Nash equilibrium cqceln particular, we will see that
subgame perfect equilibrium (SPE) concept that we havedntted when we studied extensive
form games with complete information is not adequate. Tsfilate the main problem in the SPE
concept, however, the following game with imperfect, bunptete, information is sufficient.

The strategic form of this game is given by

L R
o[13]13
T|21]00
B|02][01

It can be easily seen that the set of Nash equilibria of thieegas {(T,L),(O,R)}. Since this
game has only one subgame, i.e., the game itself, this ist@szet of SPE. But there is something
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2.1 0,0 0,2 0,1

Figure 11.1: Something Wrong with SPE

implausible about théO, R) equilibrium. ActionRis strictly dominated for player 2 at the infor-
mation set. Therefore, if the game ever reaches that information seyepl2 should never play.
Knowing that, then, player 1 should pldy as she would know that player 2 would playand she
would get a payoff of 2 which is bigger than the payoff that gbes by playind). Subgame perfect
equilibrium cannot capture this, because it does not téishiaity of player 2 at the non-singleton
information set .

The above discussion suggests the direction in which we feastgengthen the SPE concept.
We would like players to be rational not only in very subgameabso in everycontinuation game
A continuation game in the above example is composed of fbenmration setl and the nodes that
follow from that information set. First, notice that the Goomation game does not start with a
single decision node, and hence it is not a subgame. Howadiemality of player 2 requires that
he plays actior. if the game ever reaches there.

In general, the optimal action at an information set may ddpm which node in the informa-
tion set the play has reached. Consider the following matdifia of the above game.

Here the optimal action of player 2 at the information Isdepends on whether player 1 has
playedT or B - information that 2 does not have. Therefore, analyzinggr@’s decision problem
at that information set requires him forming beliefs regagdvhich decision node he is at. In other
words, we require that

(1) (Condition 1: Beliefs) At each information set the player who moves at that infoiromaset
has beliefs over the set of nodes in that information set.

and

(2) (Condition 2: Sequential Rationality) At each information set, strategies must be optimal,
given the beliefs and subsequent strategies.
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2.1 0,0 0,1 0,2

Figure 11.2

Let us check what these two conditions imply in the game gimeffigure 11.1. Condition 1
requires that player 2 assigns beliefs to the two decisiatesi@t the information sét Let the
probability assigned to the node that followsbe p € [0, 1] and the one assigned to the node that
follows B be 1— . Given these beliefs the expected payoff to actida

Ux14+ (11— x2=2—H
whereas the expected payoffRas
Ux04+(1—-pwx1l=1—p

Notice that 2- u > 1—p for any p € [0,1]. Therefore, Condition 2 requires that in equilibrium
player 2 never playR with positive probability. This eliminates the subgamefgetrequilibrium
(O,R), which, we argued, was implausible.

Although it requires players to form beliefs at non-singteinformation sets, condition 1, does
not specify how these beliefs are formed. As we are after aililegqum concept, we require the
beliefs to be consistent with the players’ strategies. Agxample consider the game given in
Figure 2 again. Suppose player 1 plays actiond, andB with probabilitiesp; (O), B1(T), and
B1(B), respectively. Also left be the belief assigned to node that followsn the information set
I. If, for example,31 (T) = 1 andp = 0, then we have a clear inconsistency between player 1's
strategy and player 2's beliefs. The only consistent batighis case would bg = 1. In general,
we may applyBayes’ Rule whenever possible, to achieve consistency:

B.(T)

M B M)+ B (B)
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Of course, this requires th8§ (T) +B1(B) # 0. If B1(T) +B1(B) =0, i.e., player 1 plays action
O with probability 1, then player 2 does not obtain any infotimra regarding which one of his
decision nodes has been reached from the fact that the pdayaehed. The weakest consistency
condition that we can impose is then,

(3) (Condition 3: Weak Consistency)Beliefs are determined by Bayes’ Rule and strategies when-
ever possible.

These three conditions define the equilibrium coné&gtect Bayesian Equilibrium (PBE).

11.2 Perfect Bayesian Equilibrium

To be able to define PBE more formally, létbe the set of all information sets a player has in
the game, and leA(h) be the set of actions available at information lsef behavioral strategy
for playeri is a functionf; which assigns to each information $et H; a probability distribution
onA(h),i.e.,

Z Bi(a) =1
acA(h)
Let B, be the set of all behavioral strategies available for played B be the set of all behavioral
strategy profiles, i.e B = x;B;. A belief systemu: X — [0, 1] assigns to each decision node
the information seh a probabilityp(x), wherey,-np(x) = 1 for all h € H. Let M be the set of
all belief systems. Arassessmenti, ) € M x B is a belief system combined with a behavioral
strategy profile.

Perfect Bayesian equilibriumis an assessmef(jt, B) that satisfy conditions 1-8.To illustrate,
consider the game in Figure 2 again. Beta) be the probability assigned to actiarby playeri,
andp be the belief assigned to the node that folldwis information set. In any PBE of this game
we have(i) B2 (L) =1, (ii) B2(L) =0, or (iii) B2(L) € (0,1). Let us check each of the possibilities
in turn:

(i) B2 (L) = 1. In this case, sequential rationality of player 2 impliest the& expected payoff th
is greater than or equal to the expected payoRtoe.,

UX1+(1—px1>pux0+(1—p)x2

Iperfect Bayesian equilibrium, as it was defined in D. Fudembed J. Tirole (1991), “Perfect Bayesian and Se-
quential Equilibrium,”Journal of Economic Theor$3, 236-60, puts more restrictions on the out-of-equiilitorbeliefs
and hence is stronger than the definition provided here.



11.2. Perfect Bayesian Equilibrium 135

or
1>2-2u<—=pu>1/2

Sequential rationality of player 1 on the other hand impiied she play3,i.e.,f1(T) =1. Bayes’
rule then implies that

U= Bo(™) 1 1

B1(T)+Ps(B) 1+0 7
which is greater than 1/2, and hence does not contradicepBy sequential rationality. Therefore,
the following assessment is a PBE

B1(T)=1B2(L)=1p=1

(i) B2 (L) = 0. Sequential rationality of player 2 now implies that 1/2, and sequential rational-
ity of player 1 implies thaB; (O) = 1. Sincef:1 (T) + B1(B) = 0, however, we cannot apply Bayes’
rule, and hence condition 3 is trivially satisfied. Therefdhere is a continuum of equilibria of the
form

B1(0) =1,B2(L) =0,u<1/2.

(i) B2(L) € (0,1). Sequential rationality of player 2 implies that 1/2. For player 1 the expected
payoff toOis 1, to T is 2B,(L), and toB is 0. Clearly, player 1 will never plap with positive
probability, that is in this case we always hgge(B) = 0. If, B1(O) = 1, then we must have
2B2(L) <1< B2(L) < 1/2, and we cannot apply Bayes’ rule. Therefore, any assessimant t
has

B1(0)=10<PB2(L)<1/2,u=1/2

is a PBE. If, on the other hanfl; (O) = 0, then we must havB; (T) = 1, and Bayes' rule implies
that p = 1, contradictingu = 1/2. If 31(0) € (0,1), then Bayes’ rule implies that = 1, again
contradictingu= 1/2.

Perfect Bayesian Equilibrium could be considered a weakibgum concept, because it does
not put enough restrictions on out-of-equilibrium beliefSonsider the three-player game given
in Figure 11.3. The unique subgame perfect equilibrium &f game is(D,L,R’). However, the
strategy profile(A,L,L’) together with the belief system that puts probability 1 te ttode that
follows Ris an assessment that satisfies conditions 1-3. Cleardyisthiot a plausible outcome, as
(L,L") is not a Nash equilibrium of the subgame that starts withgl&s move. Also, notice that
player 3's beliefs are not consistent with player 2's styatdut since player 3's information set is
off-the-equilibrium, Bayes’ rule has no bite there.

The most commonly used equilibrium concept that do not sdffan such deficiencies is
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1,2,1 3,33 0,1,2 0,1,1

Figure 11.3: PBE may have "unreasonable” beliefs

that of sequential equilibrium. Before we can define sedqakeguilibrium, however, we have to
define a particular consistency notion. A behavioral sgateofile is said to beompletely mixed
if every action receives positive probability.

Definition (Consistency) An assessmertiy, 3) is consistentif there exists a completely mixed
sequencép”, ") that converges téy, B) such thayl" is derived fromB" using Bayes' rule for all
n.

An assessmertfl, B) is asequential equilibrium if it is sequentially rational and consistent. To
illustrate, consider the game in Figure 11.3 again.|Ua¢ the probability assigned to the node that
follows L, and consider the assessméef#, L,L"), = 0). For this to be a sequential equilibrium,
we have to find a completely mixed behavioral strategy pr@fllsuch that

Bl M) 1B - 1pY(L) 1= 2D g
Bz (L) +B2(R)
which is not possible. However, the assessment give((byL,R),u= 1) is easily checked to
satisfy sequential rationality. To check consistency, let

BID) =1 B(L) =1~ BI(R) =1~ =1-_.

Notice thaty" is derived fromB" via Bayes’ rule andy”, ") — (i, B) . Therefore, this assessment
is a sequential equilibrium.
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11.3 Signalling Games

One of the most common applications in economics of exterfsikm games with incomplete
information is signalling games. In its simplest form, inigrmalling game there are two players, a
senderS, and a receiverR. Nature draws the type of the sender from a type&eawhose typical
element will be denotel. The probability of typed being drawn i (0) . Sender observes his type
and chooses a messages M. The receiver observas (but not8) and chooses an acti@ae A.
The payoffs are given bys(m,a,8) andug (m,a,0).

Let p(6/m) denote the receiver’s belief that the sender’s typé ismessagem is observed.
Also let Bs(m|6) denote the probability that typ@sender sends messageandpr(ajm) denote
the probability that the receiver chooses acticafter observing message Given an assessment
(K B), the expected payoff of a sender of types then

Us(1B,8) =Y S Bs(ml6) Br(am)us(m.a,6),
m a
whereas the expected payoff of the receiver conditionahupoeiving messaga is
Un (1 BIm) = 33 W(BIm) Br (alm) ue(m.2.8).
a

Also, Bayes’ rule implies,

/ Bs(m'|6') p(6)
H(EI) = 5 oBs(miio) p(6)

whenevery g 3s(m[0) p(0) # 0, i.e., at least one type of sender sends the message

To illustrate consider the game in figure 11.4, knowBasr or Quiche In this game Nature
(N) chooses the type of player 1 to be Tough (with probability 0.9) or WeakW) (with proba-
bility 0.1). Player 1 observes her type and chooses Quigher Beer(B). Player 2 observes only
the action choice of player 1 but not the type, and chooseghb(f ) or not to fight(A).

Let us find the pure strategy PBE of this game. There are faastpf possible equilibria:

1. Each type chooses a different acti@eparating Equilibria):

(a) Weak chooses quiche, Tough chooses (BeiQW) = 1,Bs(Q|T) =0) :
Bayes’ rule implies that

Bs(QW) p(W) _ 1x0.1 _,
(QW) p(W) +Bs(Q[T)p(T)  1x01+0x09

HWIQ) = Bs

Similarly, u(T|B) = 1. Therefore, the receiver’s sequential rationality imptrestfr (A|B) =
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1,1 0,1
F F
Q 1 B
W 2,0
2 N 2
T 1,0
Q 1 B
A A
2,1 31

Figure 11.4: Beer or Quiche

1 andBr(F|Q) = 1. Sequential rationality of the sender, then, implies faiQ|W) =
0, contradicting our hypothesis. So, there is no PBE of thigtyp
(b) Weak chooses beer, Tough chooses quifaéQ/W) =0,Bs(Q|T)=1):

Bayes' rule implies that (T |Q) = 1 andu(W|B) = 1. Therefore, the receiver’s sequen-
tial rationality implies thafr (F |B) = 1 andBr (A|Q) = 1. Sequential rationality of the
sender, then, implies th@(Q|W) = 1, contradicting our hypothesis. So, there is no
PBE of this type either.

2. Both types choose the same actiBodgling Equilibria)

(a) Both choose quich@s(QW) =1,Bs(Q|T)=1):

Bayes’ rule implies thapi(W|Q) = 0.1 andp(T|Q) = 0.9. Therefore, after observing
Q, the receiver's expected payoff Fois

01x1+09x0=0.1
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and expected payoff tAis
0.1x0+09x1=0.9,

and hence sequential rationality implies tifat(A|Q) = 1. The weak type’s sequen-
tial rationality implies, then, thaBs(Q|W) = 1, confirming our hypothesis. For the
tough type, playing quiche would be rational only if the ligee chooses to fight af-
ter observing beer. Therefore, we must h@géF |B) = 1, which in turn requires that
Kn(W|B) > 1/2. Therefore, any assessment which satisfies the followindPBE&:

Bs(QW) =1,Bs(Q|T) = L,Br(AIQ) = 1,Br(F|B) =1,
H(W[Q) =0.1,u(W[B) > 1/2.

(b) Both choose bedBs(BW) =1,Bs(B|T) =1) : It is easily checked that the following
constitute the set of PBE of this type:

Bs(BW) =1,Bs(B|T) = 1,Br(F|Q) = L,Br(AIB) = 1,
u(W[B) =0.1,p(W|Q) > 1/2.

Job Market Signalling?

Suppose there are two types of workers, a high ab{lty and a low ability(L) type. We
let the probability of having high ability be denoted pye (0,1). The output is equal to 2 if the
worker is of high ability and equal to 1 if he is of low abilityfrthe worker can choose a level of
educatione > 0 before applying for a job. However, the cost of having lesfeéducatione is e
for the low ability worker ande/2 for the high ability worker. The worker knows his ability tbu
the employer observes only the level of education, not tlilgyall herefore, the employer offers a
wage schedule/(e) as a function of education. The payoffs of the workers arergly

u(w,eH)=w—e/2,

uwel)=w—e

We assume that the job market is competitive and hence thiogenmffers a wage schedule
w(e) such that the expected profit is equal zero. Thereforg(kf|e) denotes the belief of the
employer that the worker is of high ability given that he hlssen education level the wage

2Based on M. Spence (1973), “Job Market Signallir@yarterly Journal of Economic87, 355-74.
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schedule will satisfyv(e) = 2u(H|e) + (1 —pu(H|e)) . We are interested in the set of PBE of this
game. Letey ande_ denote the education levels chosen by the high and low yabilitrkers,
respectively.

1. Separating Equilibria (e4 # e.): The Bayes’ rule in this case implies thatH|eq) = 1
andp(L|e ) = 1. Therefore, we havev(ey) = 2 andw (e ) = 1. Given that, the low ability
worker will choosee = 0. In equilibrium, it must be such that the low ability workeredo
not want to mimic the high ability worker and vice versa. Tfere, we need to have

€H
2——>1
5 =
oreq <2and
1>2—ey

or 1< ey. We can support angy between 1 and 2 with the following belief system

0, e<ey

u<H|e>={ Y e

2. Pooling Equilibria (eq = e = €*): The Bayes’ rule in this case implies thatH |e*) = p
andp(L|e*) =1— p. Thereforew(€") = 2p+ (1— p). = p+ 1 and hence

u(we H)=p+1-¢€/2,
u(w,e",L)=p+1—¢e".

It must be the case that

p+1-€/2>0
p+1-—€e">0.

We also need to have

p+1-—¢€/2>w(e)—e/2,
p+1-€ >w(e) —e

for all e> 0. The above inequalities are satisfied if and onlg‘ik p. We can, in turn, show
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that any sucle* can be supported as an equilibrium by the following belietam

p, e=¢"
Hle) =
H(Hle) {0’ ete



