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Chapter 1

Introduction

1.1 What is Game Theory?

We, humans, cannot survive without interacting with other humans, and ironically, it some-

times seems that we have survived despite those interactions. Production and exchange require

cooperation between individuals at some level but the same interactions may also lead to disastrous

confrontations. Human history is as much a history of fights and wars as it is a history of success-

ful cooperation. Many human interactions carry the potentials of cooperation and harmony as well

as conflict and disaster. Examples are abound: relationships among couples, siblings, countries,

management and labor unions, neighbors, students and professors, and so on.

One can argue that the increasingly complex technologies, institutions, and cultural norms that

have existed in human societies have been there in order to facilitate and regulate these interactions.

For example, internet technology greatly facilitates buyer-seller transactions, but also complicates

them further by increasing opportunities for cheating and fraud. Workers and managers have usu-

ally opposing interests when it comes to wages and working conditions, and labor unions as well as

labor law provide channels and rules through which any potential conflict between them can be ad-

dressed. Similarly, several cultural and religious norms,such as altruism or reciprocity, bring some

order to potentially dangerous interactions between individuals. All these norms and institutions

constantly evolve as the nature of the underlying interactions keep changing. In this sense, under-

standing human behavior in its social and institutional context requires a proper understanding of

human interaction.

Economics, sociology, psychology, and political science are all devoted to studying human

behavior in different realms of social life. However, in many instances they treat individuals in

isolation, for convenience if not for anything else. In other words, they assume that to understand
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6 Introduction

one individual’s behavior it is safe to assume that her behavior does not have a significant effect on

other individuals. In some cases, and depending upon the question one is asking, this assumption

may be warranted. For example, what a small farmer in a local market, say in Montana, charges for

wheat is not likely to have an effect on the world wheat prices. Similarly, the probability that my

vote will change the outcome of the U.S. presidential elections is negligibly small. So, if we are

interested in the world wheat price or the result of the presidential elections, we may safely assume

that one individual acts as if her behavior will not affect the outcome.

In many cases, however, this assumption may lead to wrong conclusions. For example, how

much our farmer in Montana charges, compared to the other farmers in Montana, certainly affects

how much she and other farmers make. If our farmer sets a pricethat is lower than the prices

set by the other farmers in the local market, she would sell more than the others, and vice versa.

Therefore, if we assume that they determine their prices without taking this effect into account,

we are not likely to get anywhere near understanding their behavior. Similarly, the vote of one

individual may radically change the outcome of voting in small committees and assuming that they

vote in ignorance of that fact is likely to be misleading.

The subject matter of game theory is exactly those interactions within a group of individuals (or

governments, firms, etc.) where the actions of each individual have an effect on the outcome that

is of interest to all. Yet, this is not enough for a situation to be a proper subject of game theory: the
Game theory studies strategic

interactions way that individuals act has to be strategic, i.e., they should be aware of the fact that their actions

affect others. The fact that my actions have an effect on the outcome does not necessitate strategic

behavior, if I am not aware of that fact. Therefore, we say that game theory studiesstrategic

interactionwithin a group of individuals. By strategic interaction we mean that individuals know

that their actions will have an effect on the outcome and act accordingly.

Having determined the types of situations that game theory deals with, we have to now discuss

how it analyzes these situations. Like any other theory, theobjective of game theory is to organize

our knowledge and increase our understanding of the outsideworld. A scientific theory tries to

abstract the most essential aspects of a given situation, analyze them using certain assumptions and

procedures, and at the end derive some general principles and predictions that can be applied to

individual instances.

For it to have any predictive power, game theory has to postulate some rules according to which

individuals act. If we do not describe how individuals behave, what their objectives are and how
rules of the game

they try to achieve those objectives we cannot derive any predictions at all in a given situation. For

example, one would get completely different predictions regarding the price of wheat in a local

market if one assumes that farmers simply flip a coin and choose between $1 and $2 a pound

compared to if one assumes they try to make as much money as possible. Therefore, to bring some
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discipline to the analysis one has to introduce some structure in terms of the rules of the game.

The most important, and maybe one of the most controversial,assumption of game theory

which brings about this discipline is that individuals arerational.
We assume that individuals are
rational.

Definition. An individual is rational if she has well-defined objectives (or preferences)

over the set of possible outcomes and she implements the bestavailable strategy to pursue

them.

Rationality implies that individuals know the strategies available to each individual, have com-

plete and consistent preferences over possible outcomes, and they are aware of those preferences.

Furthermore, they can determine the best strategy for themselves and flawlessly implement it.� If taken literally, the assumption of rationality is certainly an unrealistic one, and if

applied to particular cases it may produce results that are at odds with reality. We should

first note that game theorists are aware of the limitations imposed by this assumption

and there is an active research area studying the implications of less demanding forms

of rationality, calledbounded rationality. This course, however, is not the appropriate

place to study this area of research. Furthermore, to reallyappreciate the problems with

rationality assumption one has to first see its results. Therefore, without delving into

too much discussion, we will argue that one should treat rationality as a limiting case.

You will have enough opportunity in this book to decide for yourself whether it produces

useful and interesting results. As the saying goes: “the proof of the pudding is in the

eating.”

The term strategic interaction is actually more loaded thanit is alluded to above. It is not

enough that I know that my actions, as well as yours, affect the outcome, but I must also know that

you know this fact. Take the example of two wheat farmers. Suppose both farmer A and B know

that their respective choices of prices will affect their profits for the day. But suppose, A does not

know that B knows this. Now, from the perspective of farmer A,farmer B is completely ignorant

of what is going on in the market and hence farmer B might set any price. This makes farmer

A’s decision quite uninteresting itself. To model the situation more realistically, we then have to

assume that they both know that they know that their prices will affect their profits. One actually

has to continue in this fashion and assume that the rules of the game, including how actions affect

the participants and individuals’ rationality, are commonknowledge.

A fact X is common knowledgeif everybody knows it, if everybody knows that everybody

knows it, if everybody knows that everybody knows that everybody knows it, an so on. This has
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some philosophical implications and is subject to a lot of controversy, but for the most part we will

avoid those discussions and take it as given.
We assume that the game and

rationality are common

knowledge

In sum, we may define game theory as follows:

Definition. Game theoryis a systematic study of strategic interactions among rational

individuals.

Its limitations aside, game theory has been fruitfully applied to many situations in the realm of

economics, political science, biology, law, etc. In the rest of this chapter we will illustrate the main

ideas and concepts of game theory and some of its applications using simple examples. In later

chapters we will analyze more realistic and complicated scenarios and discuss how game theory is

applied in the real world. Among those applications are firm competition in oligopolistic markets,

competition between political parties, auctions, bargaining, and repeated interaction between firms.

1.2 Examples

For the sake of comparison, we first start with an example in which there is no strategic inter-

action, and hence one does not need game theory to analyze.

Example 1.1(A Single Person Decision Problem). Suppose Ali is an investor who can invest his

$100 either in a safe asset, say government bonds, which brings 10% return in one year, or he can

invest it in a risky asset, say a stock issued by a corporation, which either brings 20% return (if the

company performance is good) or zero return (if the company performance is bad).

State

Good Bad

Bonds 10% 10%

Stocks 20% 0%

Clearly, which investment is best for Ali depends on his preferences and the relative likelihoods

of the two states of the world. Let’s denote the probability of the good state occurringp and that of

the bad state 1− p, and assume that Ali wants to maximize the amount of money he has at the end

of the year. If he invests his $100 on bonds, he will have $110 at the end of the year irrespective

of the state of the world (i.e., with certainty). If he invests on stocks, however, with probability
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p he will have $120 and with probability 1− p he will have $100. We can therefore calculate his

average (or expected) money holdings at the end of the year as

p×120+(1− p)×100= 100+20× p

If, for example,p= 1/2, then he expects to have $110 at the end of the year. In general, if p> 1/2,

then he would prefer to invest in stocks, and ifp < 1/2 he would prefer bonds.

This is just one example of asingle person decision making problem, in which the decision

problem of an individual can be analyzed in isolation of the other individuals’ behavior. Any
A single person decision
problem has no strategic

interaction
uncertainty involved in such problems are exogenous in the sense that it is not determined or in-

fluenced in any way by the behavior of the individual in question. In the above example, the only

uncertainty comes from the performance of the stock, which we may safely assume to be inde-

pendent of Ali’s choice of investment. Contrast this with the situation illustrated in the following

example.

Example 1.2(An Investment Game). Now, suppose Ali again has two options for investing his

$100. He may either invest it in bonds, which have a certain return of 10%, or he may invest it in

a risky venture. This venture requires $200 to be a success, in which case the return is 20%, i.e.,

$100 investment yields $120 at the end of the year. If total investment is less than $200, then the

venture is a failure and yields zero return, i.e., $100 investment yields $100. Ali knows that there

is another person, let’s call her Beril, who is exactly in thesame situation, and there is no other

potential investor in the venture. Unfortunately, Ali and Beril don’t know each other and cannot

communicate. Therefore, they both have to make the investment decision without knowing the

decisions of each other.

We can summarize the returns on the investments of Ali and Beril as a function of their deci-

sions in the table given in Figure 1.1. The first number in eachcell represents the return on Ali’s

investment, whereas the second number represents Beril’s return. We assume that both Ali and

Beril know the situation represented in this table, i.e., they know the rules of the game.

Figure 1.1: Investment Game.

Ali

Beril
Bonds Venture

Bonds 110,110 110,100
Venture 100,110 120,120

The existence of strategic interaction is apparent in this situation, which should be contrasted

with the one in Example 1.1. The crucial element is that the outcome of Ali’s decision (i.e., the

return on the investment chosen) depends on what Beril does.Investing in the risky option, i.e., the
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venture, has an uncertain return, as it was the case in Example 1.1. However, now the source of the

uncertainty is another individual, namely Beril. If Ali believes that Beril is going to invest in the

venture, then his optimal choice is the venture as well, whereas, if he thinks Beril is going to invest

in bonds, his optimal choice is to invest in bonds. Furthermore, Beril is in a similar situation, and

this fact makes the problem significantly different from theone in Example 1.1.

So, what should Ali do? What do you expect would happen in thissituation? At this point

we do not have enough information in our model to provide an answer. First we have to describe

Ali and Beril’s objectives, i.e., their preferences over the set of possible outcomes. One possibility,

economists’ favorite, is to assume that they are both expected payoff, or utility, maximizers. If

we further take utility to be the amount of money they have, then we may assume that they are

expected money maximizers. This, however, is not enough forus to answer Ali’s question, for we

have to give Ali a way to form expectations regarding Beril’sbehavior.

One simple possibility is to assume that Ali thinks Beril is going to choose bonds with some

given probabilityp between zero and one. Then, his decision problem becomes identical to the one

in Example 1.1. Under this assumption, we do not need game theory to solve his problem. But,

is it reasonable for him to assume that Beril is going to decide in such a mechanical way? After

all, we have just assumed that Beril is an expected money maximizer as well. So, let’s assume that

they are both rational, i.e., they choose whatever action that maximizes their expected returns, and

they both know that the other is rational.

Is this enough? Well, Ali knows that Beril is rational, but this is still not enough for him to

deduce what she will do. He knows that she will do what maximizes her expected return, which,

in turn, depends on what she thinks Ali is going to do. Therefore, what Ali should do depends on

what she thinks Beril thinks that he is going to do. So, we haveto go one more step and assume

that not only each knows that the other is rational but also each knows that the other knows that

the other is rational. We can continue in this manner to arguethat an intelligent solution to Ali’s

connundrum is to assume that both know that both are rational; both know that both know that both

are rational; both know that both know that both know that both are rational; ad infinitum. This

is a difficult problem indeed and game theory deals exactly with this kind of problems. The next

example provides a problem that is relatively easier to solve.

Example 1.3(Prisoners’ Dilemma). Probably the best known example, which has also become

a parable for many other situations, is called the Prisoners’ Dilemma. The story goes as follows:

two suspects are arrested and put into different cells before the trial. The district attorney, who is

pretty sure that both of the suspects are guilty but lacks enough evidence, offers them the following

deal: if both of them confess and implicate the other (labeled C), then each will be sentenced to,

say, 5 years of prison time. If one confesses and the other does not (labeledN), then the “rat” goes



1.2. Examples 11

free for his cooperation with the authorities and the non-confessor is sentenced to 6 years of prison

time. Finally, if neither of them confesses, then both suspects get to serve one year.

We can compactly represent this story as in Figure 1.2 where we assume that the utility of a

year in prison is−1 for each suspect.

Figure 1.2: Prisoners’ Dilemma.

Player 1

Player 2
C N

C −5,−5 0,−6
N −6,0 −1,−1

For instance, the best outcome for the player 1 is the case in which he confesses and the player

2 does not. The next best outcome for player 1 is (N,N), and then (C,C) and finally (N,C). A

similar interpretation applies to player 2.

How would you play this game in the place of player 1? One useful observation is the follow-

ing: no matter what player 2 intends to do, playingC yields a better outcome for player 1. This is

so because (C,C) is a better outcome for him than (N,C), and (C,N) is a better outcome for him

than (N,N). So, it seems only “rational” for player 1 to playC by confessing. The same reasoning

for player 2 entails that this player too is very likely to play C. A very reasonable prediction here

is, therefore, that the game will end in the outcome (C,C) in which both players confess to their

crimes.

And this is the dilemma: wouldn’t each of the players be strictly better off by playingN in-

stead? After all, (N,N) is preferred by both players to (C,C). It is really a pity that the rational

individualistic play leads to an inferior outcome from the perspective of both players.

You may at first think that this situation arises here only because the prisoners are put into

separate cells and hence are not allowed to have pre-play communication. Surely, you may argue,

if the players debate about how to play the game, they would realize that (N,N) is superior relative

to (C,C) for both of them, and thus agree to playN instead ofC. But even if such a verbal agreement

is reached prior to the actual play of the game, what makes player 1 so sure that player 2 will not

backstab him in the last instant by playingC; after all, if player 2 is convinced that player 1 will

keep his end of the bargain by playingN, it is better for her to playC. Thus, even if such an

agreement is reached, both players may reasonably fear betrayal, and may thus choose to betray

before being betrayed by playingC; we are back to the dilemma.

☞ What do you think would happen if players could sign binding contracts?

Even if you are convinced that there is a genuine dilemma here, you may be wondering why
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we are making such a big deal out of a silly story. Well, first note that the “story” of the prisoners’

dilemma is really only a story. The dilemma presented above correspond to far more realistic

scenarios. The upshot is that there are instances in which the interdependence between individuals

who rationally follow their self-interest yields sociallyundesirable outcomes. Considering that

one of the main claims of the neoclassical economics is that selfish pursuit of individual welfare

yields efficient outcomes (the famous invisible hand), thisobservation is a very important one, and

economists do take it very seriously. We find in prisoners’ dilemma a striking demonstration of the

fact that the classical claim that “decentralized behaviorimplies efficiency” is not necessarily valid

in environments with genuine room for strategic interaction.� Prisoners’ dilemma type situations actually arise in many interesting scenarios, such

as arms-races, price competition, dispute settlements with or without lawyers, etc. The

common element in all these scenarios is that if everybody iscooperative a good outcome

results, but nobody finds it in her self-interest to act cooperatively, and this leads to a less

desirable outcome. As an example consider the pricing game in a local wheat market

(depicted in Figure 1.3) where there are only two farmers andthey can either set a low

price (L) or a high price (H). The farmer who sets the lowest price captures the entire

market, whereas if they set the same price they share the market equally.

Figure 1.3: Pricing Game.

Farmer A

Farmer B
L H

L 1,1 4,0
H 0,4 2,2

This example paints a very grim picture of human interactions. Indeed, many times we observe

cooperation rather than its complete failure. One important area of research in game theory is the

analysis of environments, institutions, and norms, which actually sustain cooperation in the face of

such seemingly hopeless situations as the prisoners’ dilemma.

Just to illustrate one such scenario, consider a repetitionof the Prisoners’ Dilemma game.

In a repeated interaction, each player has to take into account not only what is their payoff in

each interaction but also how the outcome of each of these interactions influences the future ones.

For example, each player may induce cooperation by the otherplayer by adopting a strategy that

punishes bad behavior and rewards good behavior. We will analyze such repeated interactions in

Chapter 9.
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Example 1.4(Rebel Without a Cause). In the classic 1955 movieRebel Without a Cause, Jim,

played by James Dean, and Buzz compete for Judy, played by Natalie Wood. Buzz’s gang members

gather by a cliff that drops down to the Pacific Ocean. Jim and Buzz are to drive toward the cliff;

the first person to jump from his car is declared the chicken whereas the last person to jump is a

hero and captures Judy’s heart. Each player has two strategies: jump before the other player (B)

and after the other player (A). If they jump at the same time (B,B), they survive but lose Judy. If

one jumps before and the other after, the latter survive and gets Judy, whereas the former gets to

live, but without Judy. Finally, if both choose to jump afterthe other (A,A), they die an honorable

death.

The situation can be represented as in Figure 1.4.

Figure 1.4: Game of Chicken.

Jim

Buzz
B A

B 2,2 1,3
A 3,1 0,0

The likely outcome is not clear. If Jim thinks Buzz is going tojump before him, then he is

better off waiting and jumping after. On the other hand, if hethinks Buzz is going to wait him

out, he better jumps before: he is young and there will be other Judys. In the movie Buzz’s leather

jacket’s sleeve is caught on the door handle of his car. He cannot jump, even though Jim jumps.

Both cars and Buzz plunge over the cliff.1

Game of chicken is also used as a parable of situations which are more interesting than the

above story. There are dynamic versions of the game of chicken called thewar of attrition. In a

war of attrition game, two individuals are supposed to take an action and the choice is the timing

of that action. Both players desire to be the last to take thataction. For example, in the game of

chicken, the action is to jump. Therefore, both players try to wait each other out, and the one who

concedes first loses.

Example 1.5(Entry Game). In all the examples up to here we assumed that the players either

choose their strategies simultaneously or without knowingthe choice of the other player. We

model such situations by using what is known asStrategic (or Normal) Form Games.

In some situations, however, players observe at least some of the moves made by other players

and therefore this is not an appropriate modeling choice. Take for example theEntry Gamedepicted

in Figure 1.5. In this game Pepsi (P) first decides whether to enter a market curently monopolized

1In real life, James Dean killed himself and injured two passengers while driving on a public highway at an estimated
speed of 100 mph.
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Figure 1.5: Entry Game
P

C
Out In

A F
0,4

2,2 −1,0

Table 1.1: Voters’ Preferences

voter 1 voter 2 voter 3

A B S
S A A
B S B

by Coke (C). After observing Pepsi’s choice Coke decides whether to fight the entry (F) by, for

example, price cuts and/or advertisement campaigns, or acquiesce (A).

Such games of sequential moves are modeled using what is known asExtensive Form Games,

and can be represented by a game tree as we have done in Figure 1.5.

In this example, we assumed that Pepsi prefers entering onlyif Coke is going to acquiesce, and

Coke prefers to stay as a monopoly, but if entry occurs it prefers to acquiesce; hence the payoff

numbers appended to the end nodes of the game.

☞ What do you think Pepsi should do?

☞ Is there a way for Coke to avoid entry?

Example 1.6(Voting). Another interesting application of game theory, to political science this

time, isvoting. As a simple example, suppose that there are two competing bills, A and B, and

three legislators, voters 1, 2 and 3, who are to vote on these bills. The voting takes place in two

stages. They first vote between A and B, and then between the winner of the first stage and the

status-quo, denoted S. The voters’ rankings of the alternatives are given in Table 1.1.

First note that if each voter votes truthfully, A will be the winner in the first round, and it will

also win against the status-quo in the second round. Do you think this will be the outcome? Well,

voter 3 is not very happy about the outcome and has another wayto vote which would make him
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Figure 1.6: Voting Game

First Round

Second Round

Second Round

A

S

A

B

happier. Assuming that the other voters keep voting truthfully, she can vote for B, rather than A,

in the first round, which would make B the winner in the first round. B will lose to S in the second

round and voter 3 is better off. Could this be the outcome? Well, now voter 2 can switch her vote

to A to get A elected in the first round which then wins against S. Since she likes A better than S

she would like to do that.

We can analyze the situation more systematically starting from the second round. In the second

round, each voter should vote truthfully, they have nothingto gain and possibly something to lose

by voting for a less preferred option. Therefore, if A is the winner of the first round, it will also win

in the second round. If B wins in the first round, however, the outcome will be S. This means that,

by voting between A and B in the first round they are actually voting between A and S. Therefore,

voter 1 and 2 will vote for A and eventual outcome will be A. (see Figure 1.6.)

Example 1.7 (Investment Game with Incomplete Information). So far, in all the examples, we

have assumed that every player knows everything about the game, including the preferences of the

other players. Reality, however, is not that simple. In manysituations we lack relevant information

regarding many components of a strategic situation, such asthe identity and preferences of other

players, strategies available to us and to other players, etc. Such games are known asGames with

Incomplete (or Private) Information.

As an illustration, let us go back to Example 1.2, which we modify by assuming that Ali is

not certain about Beril’s preferences. In particular, assume that he believes (with some probability

p) that Beril has the preferences represented in Figure 1.1, and with probability 1− p he believes

Beril is a little crazy and has some inherent tendency to takerisks, even if they are unreasonable

from the perspective of a rational investor. We represent the new situation in Figure 1.7.

Figure 1.7: Investment Game with Incomplete Information

Ali

Beril
Bonds Venture

Bonds 110,110 110,100
Venture 100,110 120,120

Normal (p)

Beril
Bonds Venture

110,110 110,120
100,110 120,120

Crazy (1− p)
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If Ali was sure that Beril was crazy, then his choice would be clear: he should choose to invest

in the venture. How small shouldp be for the solution of this game to be both Ali and Beril,

irrespective of her preferences, investing in the venture?Suppose that “normal” Beril chooses

bonds and Ali believes this to be the case. Investing in bondsyields $110 for Ali irrespective of

what Beril does. Investing in the venture, however, has the following expected return for Ali

p×100+(1− p)×120= 120−20p

which is bigger than $110 ifp< 1/2. In other words, we would expect the solution to be investment

in the venture for both players if Ali’s belief that Beril is crazy is strong enough.

Example 1.8(Signalling). In Example 1.7 one of the players had incomplete informationbut they

chose their strategies without observing the choices of theother player. In other words, players did

not have a chance to observe others’ behavior and possibly learn from them. In certain strategic

interactions this is not the case. When you apply for a job, for example, the employer is not exactly

sure of your qualities. So, you try to impress your prospective boss with your resume, education,

dress, manners etc. In essence, you try tosignalyour good qualities, and hide the bad ones, with

your behavior. The employer, on the other hand, has to figure out which signals she should take

seriously and which ones to discount (i.e. she tries toscreengood candidates).

This is also the case when you go out on a date with someone for the first time. Each person

tries to convey their good sides while trying to hide the bad ones, unless of course, it was a failure

from the very beginning. So, there is a complex interaction of signalling and screening going on.

Suppose, for example, that Ali takes Beril out on a date. Beril is going to decide whether she is

going to have a long term relationship with him (call that marrying) or dump him. However, she

wants to marry a smart guy and does not know whether Ali is smart or not. However, she thinks he

is smart or dumb with equal probabilities. Ali really wants to marry her and tries to show that he

is smart by cracking jokes and being funny in general during the date. However, being funny is not

very easy. It is just stressful, and particularly so if one isdumb, to constantly try to come up with

jokes that will impress her. Figure 1.8 illustrates the situation.

What do yo think will happen at the end? Is it possible for a dumb version of Ali to be funny

and marry Beril? Or, do you think it is more likely for a smart Ali to marry Beril by being funny,

while a dumb Ali prefers to be quite and just enjoys the food, even if the date is not going further

than the dinner?

Example 1.9(Hostile Takeovers). During the 1980s there was a huge wave of mergers and acqui-

sitions in the Uniter States. Many of the acquisitions took the form of “hostile takeovers,” a term

used to describe takeovers that are implemented against thewill of the target company’s manage-
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Figure 1.8: Dating Game
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ment. They usually take the form of direct tender offers to shareholders, i.e., the acquirer publicly

offers a price to all the shareholders. Some of these tender offers were in the form of what is known

as “two-tiered tender offer.”

Such was the case in 1988 when Robert Campeau made a tender offer for Federated Department

Stores. Let us consider a simplified version of the actual story. Suppose that the pre-takeover price

of a Federated share is $100. Campeau offers to pay $105 per share for the first 50% of the shares,

and $90 for the remainder. All shares, however, are bought atthe average price of the total shares

tendered. If the takeover succeeds, the shares that were notrendered are worth $90 each.

For example, if 75% of the shares are tendered, Campeau pays $105 to the first 50% and pays

$90 to the remaining 25%. The average price that Campeau paysis then equal to

p = 105×
50
75

+90×
25
75

= 100

In general, ifs percent of the shares are tendered the average price paid by Campeau, and thus
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the price of a tendered share, is given by

p =







105 if s≤ 50

105× 50
s +90× s−50

s if s> 50

Notice that if everybody tenders, i.e.,s= 100, then Campeau pays $97.5 per share which is less

than the current market price. So, this looks like a good dealfor Campeau, but only if sufficiently

high number of shareholders tender.

☞ If you were a Federated shareholder, would you tender your shares to Campeau?

☞ Does your answer depend on what you think other shareholderswill do?

☞ Now suppose Macy’s offers $102 per share conditional upon obtaining the majority.

What would you do?

The actual unfolding of events were quite unfortunate for Campeau. Macy’s joined the bidding

and this increased the premium quite significantly. Campeaufinally won out (not by a two-tiered

tender offer, however) but paid $8.17 billion for the stock of a company with a pre-acquisition

market value of $2.93 billion. Campeau financed 97 percent ofthe purchase price with debt. Less

than two years later, Federated filed for bankruptcy and Campeau lost his job.

1.3 Our Methodology

So, we have seen that many interesting situations involve strategic interactions between indi-

viduals and therefore render themselves to a game theoretical study. At this point one has two

options. We can either analyze each case separately or we maytry to find general principals that

apply to any game. As we have mentioned before, game theory provides tools to analyze strate-

gic interactions, which may then be applied to any arbitrarygame-like situation. In other words,

throughout this course we will analyze abstract games, and suggest “reasonable” outcomes as solu-

tions to those games. To fix ideas, however, we will discuss applications of these abstract concepts

to particular cases which we hope you will find interesting.

We will analyze games along two different dimensions: (1) the order of moves; (2) information.

This gives us four general forms of games, as we illustrate inTable 1.2.
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Table 1.2: Game Forms

Information

Complete Incomplete

Strategic Form Games Bayesian Games
Simultaneous with Complete Information

Moves Example 1.2 Example 1.7

Extensive form Games Extensive form Games
Sequential with Complete Information with Incomplete Information

Example 1.5 Example 1.8
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Chapter 2

Strategic Form Games with Complete

Information

2.1 Preliminaries

The simplest form of strategic interdependence prevails incontexts in which the actions are

either taken simultaneously or without the knowledge of action choices of the other players. To

model such a setting, all we need to do is to specify the set of interacting individuals (commonly

called the players), the set of actions available to these individuals, and a description of the incen-

tives regarding the modeled interaction. That is, we need towrite down the who, what and why of

the setting we are trying to model.

Formally speaking, we need exactly three objects to define a game in strategic form.

Definition. A strategic form gameis composed of

➥ Set of players : N

➥ A set of actions : Ai for each playeri

➥ A payoff function: ui : A→ R for each playeri

In general, we name the players by integers and denote a generic player byi, whom we call

player i. However, this choice is arbitrary and one may choose to namethe players differently.

In the chicken game of Example 1.4 on page 13, for example, theset of players is given byN =

{Jim,Buzz}.

We interpretAi as the set of all available actions (or strategies) to playeri. That is, for player

i,“playing the game” means choosing an action from the setAi. For instance, in the children game

21
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“rock, scissors and paper,” the action space for each playeris {rock, scissors, paper}, and in the

prisoners’ dilemma the action space for each playeri is {confess, not confess} (i.e. {C,N}).

Given the action spaces of the players, we define theoutcome spaceof the game as

A = ×i∈NAi = {(a1, ...,an) : ai ∈ Ai, i = 1, ...,n}.

An outcome a= (a1, ...,an) is thus nothing but an action profile.

To be able to formulate the decision problem of a player in a given strategic environment, we

need to know about the preferences of this individual. Payoff functions represent these preferences.

The interpretation of a payoff function is identical to thatof a utility function that you might have

encountered in a microeconomics course. Ifui(a1, ...,an) > ui(b1, ...,bn), then we understand that

playeri likes outcomea = (a1, ...,an) strictly better than the outcomeb = (b1, ...,bn). The crucial

observation is that the payoff of the playeri depends not only on the action chosen by playeri but

also on the action choices of the rest of the participating players. As we have discussed before, this

is a crucial element distinguishing a game theoretic decision problem from a single agent decision

problem.

We should note that, at this level of generality, we treat a statement likeui(a) > ui(b) as purely

ordinal, that is, without attaching any meaning to the differenceui(a)−ui(b). All we know in the

formulation so far is how the individualsrank the outcomes, not how much “utils” they derive from

them. For instance, in the prisoners’ dilemma game considered above, assigning payoff 0 for player

1 to the outcome (N,C) was arbitrary; any number would do so long as it is strictly smaller than

that assigned to(C,C) (which must be strictly smaller than that assigned to(N,N) which, in turn,

must be strictly smaller than that assigned to(C,N)). In later sections, when we start analyzing

cases in which individuals face uncertainty, we will have tomodify this assumption.

Summing up, we define formally a game in strategic form as the tuple

(N,{Ai}i∈N,{ui}i∈N).

(Note that the term “normal form game” is also used in the literature.) Thus, when we talk about

a “game in strategic form” we have in mind a setup in which all this information is provided. In

particular, if the game is played by only two players (so thatN = {1,2}), we need exactly four

pieces of information:

(A1,A2,u1,u2).

Therefore, if each player has finitely many actions available to him/her, then we can represent a

2-person game in strategic form by means of abimatrix, as we have done in examples 1.2–1.4 in

Chapter 1. In such a representation our convention is alwaysthat player 1 (who is a male) chooses
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the rows and player 2 (who is a female) chooses the columns.� A game in strategic form attempts to capture a scenario in which there is strategic

interdependence among a set of players who either take theiractions simultaneously or

withoutobserving the actions chosen by others. Therefore, strategic form games are not

suitable to model situations where individuals take actions in a sequential manner after

observing the actions taken before.

A crucial assumption in our model of a game in strategic form is that everything about the

formulation of the game (that is the set of players, the set ofactions and the utility functions) are

all known by each player in the game. What is more, each playerknows that all players know

everything about the game, and all players know that each player knows that all players know ev-

erything about the game, and so on. Believe it or not, at a philosophical level, all this matters. But

we shall not concern ourselves much with this issue; we shallsimply postulate that the primitives

of a game iscommon knowledgewithout worrying too much about what this really means.1 What

is more, there is no uncertainty pertaining to the actions available to the players and to their payoff

functions. This makes the game form defined in this section a strategic form game with complete

information. In later sections we will have a chance to see how to model situations involving dy-

namic interaction as well as incomplete information on the part of some players.

As with any other new concept, the best way to come into grips with the games in strategic

form is to study several specific examples, hence the next section.

2.2 Examples

Example 2.1(Prisoners’ Dilemma). Recall that the prisoners’ dilemma scenario we have discussed

in the introduction was represented by the bimatrix

Figure 2.1: Prisoners’ Dilemma.

Player 1

Player 2
C N

C −5,−5 0,−6
N −6,0 −1,−1

1Trying to model the idea of “common knowledge” requires somemathematical sophistication which is best avoided
at this stage. We shall thus do no more on this topic than recommending to the interested reader the excellent survey of
J. Geanakoplos (1992), “Common knowledge,”Journal of Economic Perspectives6, pp. 53-82.
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Here we haveA1 = {C,N} = A2 so thatA = {(C,C),(C,N),(N,C),(N,N)} andu1(C,C) =

−5,u2(N,C) = 0, . . . , and so on. You should make sure you understand that the bimatrix

Figure 2.2: General Prisoners’ Dilemma.

Player 1

Player 2
C N

C b,b d,a
N a,d c,c

also represents the same game whenevera < b < c < d.

Example 2.2 (Battle of the Sexes). Ali and Beril are married and they are in their offices on a

Friday evening trying to figure out what they should do after work. They cannot not get in touch

with each other but would like to meet and spend the evening going to a movie or an opera. Ali

likes movies better while Beril would rather go to an opera. However, being in love, the most

important thing for them is to do something together; both view the night “wasted” unless they

spend it together.

We may represent this story as a 2-person game in strategic form by means of thebimatrix in

Figure 2.3

Figure 2.3: Battle of the Sexes.

Ali

Beril
m o

m 2,1 0,0
o 0,0 1,2

Here we haveN = {Ali,Beril} andAAli = ABeril = {m,o} so that

A = {(m,m),(m,o),(o,m),(o,o)},

anduAli(o,m) = 0,uBeril(o,o) = 2, . . . , and so on. (Once again the choice of utility values is arbi-

trary other than the ranking of the outcomes it entails.) Like the prisoners’ dilemma, battle of the

sexes is also a famous example in game theory that will help usillustrate many interesting con-

cepts later on. So perhaps now is a good time for you think about how you would play this game

in actuality.

What is your prediction about the outcome of this game

☞ with preplay communication?

☞ without preplay communication?
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Example 2.3(A Pure Coordination Game). Suppose now that Ali (call him player 1) and Beril

(player 2) are supposed to meet after work either in Grand Central Station (G) or Penn Station (P).

Unfortunately, neither knows where for sure. They would like to meet and, both of their offices

being on the West side, they would rather meet in Penn Station. So, we haveA1 = A2 = {G,P} and

the game being played is represented by the bimatrix in Figure 2.4.

Figure 2.4: Coordination Game.

G P
G 1,1 0,0
P 0,0 2,2

This game too is an interesting one, and we shall come back to it later when we discuss the

effects of preplay communication among the players. For now, ask yourself if your prediction about

how this game would actually be played depends on whether preplay communication is allowed or

not.

Example 2.4(Matching Pennies). Ali and Beril finally meet and try to decide whether to go see

a movie or an opera. Neither one of them concedes to the other and they decide to play matching

pennies to choose where to go. Each of them conceals a penny intheir palm either with its face up

(heads,H) or face down (tails,T). Both coins are revealed simultaneously. If they match Aliwins

and if they are different Beril wins. The bimatrix is given inFigure 2.5.

Figure 2.5: Matching Pennies.

H T
H 2,1 1,2
T 1,2 2,1

What is your prediction about the outcome of this game

☞ Write down the outcome space of this game algebraically.

☞ Provide another bimatrix that corresponds to the same scenario described above.

☞ Do you see an “obvious” way of playing this game?

Before considering an economically motivated example, letus note that the Prisoners’ Dilemma
symmetric games

and Coordination Game are (two-person)symmetric gamesin the sense that they satisfy the fol-

lowing two conditions:

1. A1 = A2, that is, each player has the same action set
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2. u1(a1,a2) = u2(a2,a1) for all ai ∈ Ai, i = 1,2

In other words, if we exchange the actions of the players (or in then-person case, any two players’

holding everyone else’s action fixed), then the payoffs of these players are also exchanged. (Notice

that this implies that the two players must receive the same payoff when they both choose the same

action.)

For instance, in Prisoners’ Dilemma,u1(C,C) = 1 = u2(C,C),u1(C,N) = 6 = u2(N,C), etc.

On the other hand, the Battle of the Sexes and Matching Pennies games are not symmetric. Figure

2.6 gives two other examples of asymmetric games.

Figure 2.6: Two Assymetric Games

L R
U 0,1 2,0
D 1,0 0,1

L M R
U 1,0 1,2 0,1
D 0,3 0,1 2,0

The symmetric games are in general simpler than asymmetric games because reasoning from

the point of view of one player is sufficient in such games to understand how the other players

reason as well. We shall utilize this fact in many examples that we shall consider in this book.

Let us now examine a slightly more sophisticated example of astrategic form game. This

example plays a fundamental role in the theory of industrialorganization, and we shall work out

several variations of it in the sequel.

Example 2.5 (Cournot Duopoly Model). Consider a market for a single (homogeneous) good

whose market inverse demand function is

P = D(Q), Q≥ 0

whereP is the price of the good andQ is the quantity demanded. We assume that the functionD is

monotonically decreasing. Suppose that there are exactly two firms producing this good. The cost

functions of these firms are

Ci = Ci(Qi), Qi ≥ 0, i = 1,2,

whereCi is a twice differentiable function defined onR+ with C′
i > 0 andC′′

i ≤ 0.

We may model the market interaction of these firms as a 2-person game in strategic form as

follows:

(i) N = {1,2}.

(ii) Ai = [0,Q̄]; thus(Q1,Q2)∈A= [0,Q̄]2 means that firmi is producingQi units at the outcome

(Q1,Q2). The valueQ̄> 0 is an upper bound on the level of production of firms acting asacapacity

constraint.
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(iii) ui(Q1,Q2) = D(Q1 +Q2)Qi −Ci(Qi) for eachQi ∈ Ai , i = 1,2.

This model is mathematically too general to allow for a relatively easy analysis. For this reason,

a common specification adopted in the literature posits in addition that the firms operate under

identicalconstant unit costsso thatCi(Qi) = cQi and that the market demand is given as

P =

{

a−bQ, 0≤ Q≤ a/b

0, a/b < Q

with a > c > 0 andb > 0 being given parameters. To simplify the analysis further,we setQ̄ in this

specification equal toa/b; this is meaningful since no firm would realistically produce an output

level that exceedsa/b in this setting as this would entail making negative profits.We refer to this

model as thelinear Cournot model, and observe that the payoff function of firmi in this model is:

ui(Q1,Q2) =

{

(a−b(Q1 +Q2))Qi −cQi, 0≤ Q1 +Q2 ≤ a/b

−cQi, a/b < Q1 +Q2

for eachQi ∈ Ai, i = 1,2. Therefore, the associated 2-person game in strategic form is symmetric

(while this is not necessarily the case in the general model).

The important thing to note in the Cournot model is that, unlike the market structures of perfect

competition (where all firms disregard the actions of other firms since each firm is assumed to be

negligible in the market) and of monopoly (where there is no other firm around to matter), one

firm’s action does not alone determine the outcome. Thus, we need the apparatus of game theory

to provide a prediction with respect to the market outcome.

We shall later encounter many more examples of games in strategic form. But now it is time

that we turn to the question of how to play a strategic game.
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Chapter 3

Strategic Form Solution Concepts

3.1 Dominant Strategy Equilibrium

The problem of a player in a strategic game is to decide upon anaction to take without knowing

which actions will be taken by her opponents. Therefore, each individual has to form a conjecture

regarding the action choices of the other players, and this is not always an easy task. But, in some

cases, this difficulty does not really arise, because there is an optimal way of taking an action

independentlyof the intended play of the others. We have in fact already encountered such a

situation in the prisoners’ dilemma. Indeed, taking the noncooperative action of confessing,C, is

optimal for, say player 1, in the prisoners’ dilemma no matter what player 2 is planning to do. In

this sense, we say that there is an “obvious” way of playing the prisoners’ dilemma for player 1

(and similarly for player 2): choosingC. We formalize such sure-fire actions in general as follows.

Let A = × j∈NA j be the outcome space of ann-person game in strategic form, and leta =

(a1, ...,an) ∈ A. For eachi, we let

a−i = (a1, ...,ai−1,ai+1, ...,an)

and writea = (ai ,a−i). Clearly,a−i is nothing but a profile of actions taken by all players in the

game other thani. We denote the set of all such profiles conveniently asA−i. Formally speaking,

we haveA−i = × j∈N\{i}A j .

29



30 Strategic Form Solution Concepts

Definition. An actionai ∈ Ai weakly dominatesactionbi ∈ Ai for playeri if

ui(ai ,a−i) ≥ ui(bi ,a−i) for all a−i ∈ A−i

and

ui(ai ,a−i) > ui(bi ,a−i) for somea−i ∈ A−i.

It strictly dominates bi if

ui(ai ,a−i) > ui(bi ,a−i) for all a−i ∈ A−i.

In other words, an actionai weakly dominates another actionbi for player i, if, irrespective of

what other players do, actionai does at least as well as actionbi , and for some action profiles of

the other playersai does strictly better thanbi . If ai is strictly better thanbi , irrespective of what

other players do, then we say thatai strictly dominatesbi .

Definition. An actionai ∈ Ai is weakly dominantif it weakly dominates every action in

Ai. It is calledstrictly dominantif it strictly dominates every action inAi.

☞ A dominant action must be unique. Why?

To reiterate, a dominant strategy for a player is an action that is optimal for this player no

matter what his opponents do. Put differently, a player witha dominant action does not have to

worry about how his opponents will play the game; for any belief that he might have about the plans

of actions by others, playing a dominant action is optimal. Consequently, there is good reason to

believe that rational players would play their dominant actions in a given game (of course, provided

that such actions are present). This idea leads us to the following equilibrium concept.

Definition. Weakly dominant strategy equilibriumof a gameG in strategic form is de-

fined as the weakly dominant action profile, and is denoted byDw(G). Replacing the

word “weakly” with “strictly” yields the definition for thestrictly dominant strategy equi-

librium, which is denoted byDs(G).

As we noted earlier, the actionN is strictly dominant for both players in prisoners’ dilemma

(PD). ThusDs(PD) = {(C,C)}, which is also the weakly dominant strategy equilibrium, since a

strictly dominant action is also a weakly dominant action. As an example of a weakly dominant

strategy equilibrium which is not strict, consider
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L R

U 2,1 0,2

D 2,3 4,3

In this game there is no strictly dominant strategy equilibrium. There is, however, a weakly

dominant strategy equilibrium given by the action profile (D,R).

Dominant strategy equilibrium is quite a reasonable equilibrium concept which does not de-

mand an excessive amount of “rationality” from the players.It only demands the players to be

(rational) optimizers, and does not require them to know that the others are rational too. Unfortu-

nately, this concept is silent in many interesting games since the existence of a dominant action for

all players in a given game is a relatively rare phenomenon.

Verify that there is no dominant strategy equilibrium in thefollowing games:

☞ Battle of the Sexes

☞ Coordination Game

☞ Matching Pennies

☞ Cournot Duopoly

It seems that we need to demand more rationality from the players to obtain more powerful

predictions. We now turn to a systematic way of doing this.

3.2 Dominance Solvability

We have argued above that a “rational” player would play a dominant action (when such an

action exists). Turning this argument on its head, we may then say that a “rational” player would

never play an action when there is another action available to her that guarantees strictly more

payoffs for this player irrespective of the intended play ofothers. We refer to such an action as a

strictly dominated action. Formally,
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Definition. Take a game in strategic form and consider any two actionsai ,bi ∈Ai for any

playeri ∈ N. We say thatai is strictly dominatedby bi if

ui(ai ,a−i) < ui(bi ,a−i) for all a−i ∈ A−i.

We say thatai is weakly dominatedby bi if

ui(ai ,a−i) ≤ ui(bi ,a−i) for all a−i ∈ A−i

while

ui(ai ,a−i) < ui(bi ,a−i) for somea−i ∈ A−i.

A fundamental premise in game theory is that “rational” players do not play strictly dominated

actions. For, as the argument goes, there is no belief that a player may hold about the intended play

of others such that a strictly dominated action is optimal. Therefore, given a gameG in strategic

form, it makes sense to eliminate all the strictly dominatedactions for any one of the players; after

all “rational” players know that this player will not take any such action. But if all players ponder

about how to play the game after eliminating (in their heads)strictly dominated actions of a given

player, then the actual game being played iseffectivelya smaller game than the original one. But

then why don’t we search for strictly dominated actions in this smaller game, that is, eliminate next

the strictly dominated actions of another playerrequiring “dominance” only against actions not

yet eliminated.And why not continue this way as far as we can?

Well, doing this may or may not be a reasonable thing to do depending on the context. Nev-

ertheless, this elimination process, which is called theiterated elimination of strictly dominated

(IESD) actions, certainly leads us to an interesting equilibrium concept.First of all, it yields an

extension of the strictly dominant strategy equilibrium. While this is formally obvious, it is an

important observation and we state it as a proposition.

Proposition 3.1. If both players have strictly dominant actions, then IESD actions leads to the

unique dominant strategy equilibrium.

Proof. Obvious.

Moreover, the IESD actions may apply in many games with no dominant strategy equilibrium,

and may yield a prediction concerning the play of the game even if no player has a dominant action.

This prediction may even be sharp enough to entail a unique outcome. In this case we say thatG is

dominance solvable.
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Definition. A strategic form game isdominance solvableif IESD actions leads to a

unique outcome.

Prisoners’ Dilemma is dominance solvable by Proposition 3.1. On the other hand, the IESD

actions does not at all refine the outcome space in Battle of the Sexes since neither of the players has

a strictly dominated action in this game. In other words, Battle of the Sexes game is not dominance

solvable.

As a less trivial example, consider the game

L M R

U 1,0 1,2 0,1

D 0,3 0,1 2,0

which does not possess a dominant strategy equilibrium. Observe that R is strictly dominated for

player 2 (by action M). Therefore, in the first stage of the IESD process, we eliminate R. The idea is

that player 1, being “rational,” knows that player 2 will notplay R, and views the game effectively

as
L M

U 1,0 1,2

D 0,3 0,1

But player 2, being “rational,” knows that player 1 is reallycontemplating about how to play this

smaller game, and notices that in this game D is strictly dominated for player 1. So player 2

eliminates (in his head) the action D for player 1. This is thesecond stage of the IESD process and

leaves us with the game
L M

U 1,0 1,2

We now reach to the final stage of the IESD process where we eliminate L for player 2. Hence this

game is dominance solvable, and IESD actions leads to the outcome (U,M).

Observe that applying the process of IESD actions in the caseof a finite game is technically

easy. In the example above, for instance, the outcome is immediately obtained by eliminating first

R, then D and then L. However, you should keep in mind that the longer this process takes, the

more “he knows that she knows that he knows that ...” sort of reasonings are used, and hence the

“more rational” we demand the players should be. Put differently, for the IESD actions to make

conceptual sense, not only that each player must not take strictly dominated actions, but also that

each player must know that her opponent won’t do so, that he knows that her opponent knows

that he won’t do so, and so on. So, this concept is less plausible in complicated games. Here is
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an example of a dominance solvable game which requires the players to be, in a certain sense,

“infinitely rational.” You should decide for yourself how reasonable is the IESD actions in this

example.

Example 3.1. We consider the linear Cournot model. Observe that

du1(Q1,Q2)

dQ1
=

{

(a−c)−2bQ1−bQ2, 0≤ Q1 +Q2 ≤ a/b

−c, a/b < Q1 +Q2

so no matter whatQ2 is, du1
dQ1

< 0 whenQ1 > a−c
2b (This is perhaps a bit too swift, make sure you

understand this step.) Thus any production levelQ1 > a−c
2b is strictly dominated (bya−c

2b ). In the

first stage of the IESD actions process, therefore, we eliminate allQi >
a−c
2b , i = 1,2. Consequently,

we haveQ1 + Q2 < a/b after one iteration. (As we discuss at the end of this section, the order of

elimination does not matter for the final outcome in the case of IESD actions, so we can eliminate

the strictly dominated actions of the firms simultaneously.) Consequently, given thatQ2 ≤
a−c
2b , we

have

du1

dQ1
= (a−c)−2bQ1−bQ2

≥ (a−c)−2bQ1−b

(
a−c
2b

)

=
a−c

2
−2bQ1

so thatdu1
dQ1

> 0 whenQ1 < a−c
4b . Thus, we eliminate allQi <

a−c
4b , i = 1,2. But, given thatQ2 ≥

a−c
4b ,

one can similarly show thatdu1
dQ1

< 0 whenQ1 > 3(a−c)
8b . Iterating infinitely may times, then, only the

outcome(a−c
3b , a−c

3b ) survives the IESD actions. (Challenge: prove this.) Hence the linear Cournot

model is dominance solvable.

We define theiterated elimination of weakly dominated (IEWD)actions in a way analogous

to the IESD actions. But, as we shall see, this is a somewhat more problematic notion than IESD

actions. To begin with there is a possible contradiction in the procedure: the argument behind not

using weakly dominated actions is that if there is uncertainty in the mind of players as to the action

choice of the other players then a weakly dominated action should not be used. For example, in the

following game
L R

U 2,1 0,2

D 2,3 4,3
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player 1 should not use action U if there is a small probability in his mind that player 2 will play R.

Yet, the procedure of eliminating weakly dominated actionsmay involve deleting actions to which

the player previously assigned a positive probability. Consider in the following game

L R

U 3,1 2,0

M 4,0 1,1

D 4,4 2,4

we may delete U assuming that player 1 assigns a positive (however small) probability to the event

that player 2 will play action L. Given U is deleted, then player 2’s action L becomes weakly dom-

inated and hence it can be deleted, i.e., it is going to be played with zero probability, contradicting

the reason why action U was deleted to begin with.

Nevertheless, IEWD actions is used widely in economic applications of game theory, and we

too will utilize this concept on occasion. Let us illustrateby means of two examples the power

(and perhaps also the potential counter intuitiveness, youdecide for yourself) of the notion of

IEWD actions.

Example 3.2(Guess-the-average game). Consider ann-person strategic game in which each player

picks an integer between 1 and 999. SoN = {1, ...,n} andAi = {1, ...,999}. Let us writeā for the

mean of the action profile(a1, ...,an), that is, ā = ∑n
i=1ai/n. The winners in this game are those

players whose choice of integer is closest to2
3ā.1

• First take about five minutes to decide how you would play this game.

• Observe next that IESD actions does not provide a sharp prediction here; this game is not

dominance solvable.

• Let us now apply IEWD actions. Take any player. This player knows that no matter what

the other players play, the two-thirds of the average ballotcannot exceed 666. But then

any integer larger than 666 is weakly dominated by 666 for this individual (why weakly?).

Since this is true for all players, IEWD actions demands thatwe eliminate all actions in

{667, ...,999}. But the argument can be repeated, for every strategy in{445, ...,666} is now

1Formally, we may writeui(a1, ...,an) = 1 if
∣
∣
∣
∣
ai −

2
3

ā

∣
∣
∣
∣
≤

∣
∣
∣
∣
a j −

2
3

ā

∣
∣
∣
∣

for all j = 1, ...,n

andui(a1, ...,an) = 0, otherwise.
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weakly dominated by 444. Continuing this way (iterating finitely many times), we find that

the only outcome that survives the IEWD actions is(1, ...,1)!

Example 3.3(Chairman’s Paradox). Consider a committee of three persons (named as usual 1,

2 and 3) whose task is to choose an alternative form the choiceset{α,β,γ} by means of voting.

The alternative will be chosen on the basis of majority so that an alternative which gets two votes

wins the election. The rule is such that if there is a tie (thatis, if each voter votes for a different

alternative, then the chairman of the committee, who is, say, player 3, will unilaterally decide on the

outcome of the election by declaring the alternative that hebest likes as the winner of the election.

So this is not a symmetric game, it appears that the position of player 3 is strategically superior to

the rest of the players.

Now assume that the preferences of the players are given as inthe following list:

Player 1 Player 2 Player 3

α β γ
β γ α
γ α β

Here the convention is that any alternative in each column isstrictly preferred to the alternatives

that are below it by the corresponding player. For instance,player 1 strictly prefersα to β while she

likes β strictly better thanγ. Therefore, given these preferences, if all voters votedsincerely, each

would vote for a different alternative, and in this case, player 3 would exert his additional power to

declare the alternativeγ as the winner of the election.

However, there is no reason why all voters should vote truthfully, in principal they would do

so only if this would benefit them. What if they wish to play this voting gamestrategically? To

see what would happen in this case, let us model the scenario as a game in strategic form where

Ai = {α,β,γ} (an action for each individual is the vote that she is going tocast), and consider the
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following trimatrix representation:

α β γ
α 2,0,1 0,1,2 0,1,2

β 0,1,2 1,2,0 0,1,2

γ 0,1,2 0,1,2 0,1,2

if player 3 choosesγ

α β γ
α 2,0,1 2,0,1 2,0,1

β 2,0,1 1,2,0 0,1,2

γ 2,0,1 0,1,2 0,1,2

if player 3 choosesα

α β γ
α 2,0,1 1,2,0 0,1,2

β 1,2,0 1,2,0 1,2,0

γ 2,0,1 1,2,0 0,1,2

if player 3 choosesβ

Here, for instance,u3(α,β,γ) = 2 since in this case the outcome of the election isγ which is the

most preferred outcome by player 3. (Check that this representation really corresponds to the

scenario described above.)

Our task is now to apply the IEWD actions to this game. Here is one way of doing this:

Eliminate (1)γ for player 1; (2)α andγ for player 2; (3)α andβ for player 3; (4)α for player 1.

Hence the IEWD actions leads to the outcome(β,β,γ) which means that the winner of the election

is β. Observe that this outcome contrasts sharply with the outcome in the case of sincere voting.

In fact, with strategic voting, we observe that the worst outcome is elected for player 3 (if you

believe in IEWD actions) who supposedly is a more powerful player than the others; this is why

the present game is sometimes calledthe chairman’s paradox. (What do you think is the key to

“explain” this paradoxical outcome? What if players did notknow the preferences of the others?

What if they didn’t believe that the others were so terribly smart? Do you agree with the prediction

reached through the IEWD actions?)

Remark3.1. An important question that we have to deal with before we conclude this section is

this: could eliminating IESD actions lead to different results if elimination takes place in different

orders? Fortunately, the answer is no. (Can you prove this?)However, the answer would be yes

if we rather used weakly dominated actions in the iterations. For instance, consider the 2-person
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game in strategic form given by the bimatrix

L R

U 3,1 2,0

M 4,0 1,1

D 4,4 2,4

Here if we first eliminate player 1’s action U, then player 2’saction L, and then player 1’s action

M we get the outcome (D,R), while if we first eliminate M (and then R and then U) we get the

outcome (D,L). This shows that the order of elimination matters in the case of IEWD actions.

3.3 Nash Equilibrium

As we have mentioned in our first lecture, one of the assumptions that we will maintain is

that individuals are rational, i.e., they take the best actions to pursue their objectives. This is not

any different from the assumption of rationality, or optimizing behavior, that you must have come

across in your microeconomics classes. In most of microeconomics, individual decision making

boils down to solving the following problem:

max
x∈X

u(x,θ)

wherex is the choice variable, or possible actions, (such as a consumption bundle) of the individual,

X denotes the set of possible actions available (such as the budget set),θ denotes any parameters

that are outside the control of the individual (such as the price vector and income), andu is the

utility (or payoff) function of the individual.

What makes a situation a strategic game, however, is the factthat what is best for one individual,

in general, depends upon other individuals’ actions. The decision problem of an individual can be

phrased in above terms by treatingθ as the choices of other individuals whose actions affect the

subject individual’s payoff. In other words, lettingx= ai , X = Ai, andθ = a−i , the decision making

problem of playeri in a game becomes

max
ai∈Ai

ui (ai ,a−i) .

The main difficulty with this problem is the fact that individual does not, in general, know the

action choices of other players,a−i , whereas in single decision making problemsθ, such as price

and income, are assumed to be known, or determined as an outcome of exogenous chance events.

Therefore, determining the best action for an individual requires a joint analysis of every individ-
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ual’s decision problem.

In the previous section we have analyzed situations in whichthis problem could be circum-

vented, and hence we could analyze the problem by only considering it from the perspective of a

single individual. If, independent of the other players’ actions, the individual in question has an

optimal action, then rationality requires taking that action, and hence we can analyze that individ-

ual’s decision making problem in isolation from that of others. If every individual is in a similar

situation this leads to (weakly or strictly) dominant strategy equilibrium. Remember that, the only

assumptions that we used to reach dominant strategy equilibrium is the rationality of players (and

the knowledge of own payoff function, of course). Unfortunately, many interesting games do not

have a dominant strategy equilibrium and this forces us to increase the rationality requirements for

individuals. The second solution concept that we introduced, i.e., iterated elimination of dominated

strategies, did just that. It required not only the rationality of each individual and the knowledge

of own payoff functions, but also the (common) knowledge of other players’ rationality and payoff

functions. However, in this case we run into other problems:there may be too many outcomes

that survive IESD actions, or different outcomes may arise as outcomes that survive IEWD actions,

depending on the order of elimination.

In this section we will analyze by far the most commonly used equilibrium concept for strategic

games, i.e., the Nash equilibrium concept, which overcomessome of the problems of the solution

concepts introduced before.2 The presence of interaction among players requires each individual to

form a belief regarding the possible actions of other individuals. Nash equilibrium is based on the

premises that (i) each individual acts rationally given herbeliefs about the other players’ actions,

and that (ii) these beliefs are correct. It is the second element which makes this an equilibrium

concept. It is in this sense we may regard Nash equilibrium outcome as a steady state of a strategic

interaction. Once every individual is acting in accordancewith the Nash equilibrium, no one has

an incentive to unilaterally deviate and take another action. More formally, we have the following

definition:

2The discovery of the basic idea behind the Nash equilibrium goes back to the 1938 work of Augustine Cournot.
(Cournot’s work is translated into English in 1897 asResearches into the Mathematical Principles of the Theory of
Wealth, New York: MacMillan.) The formalization and rigorous analysis of this equilibrium concept was not given until
the seminal 1950 work of the mathematician John Nash. Nash was awarded the Nobel prize in economics in 1994 (along
with John Harsanyi and Reinhardt Selten) for his contributions to game theory. For an exciting biography of Nash, we
refer the reader to S. Nasar (1998),A Beautiful Mind, New York: Simon and Schuster.
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Definition. Nash equilibriumof a gameG in strategic form is defined as any outcome

(a∗1, ...,a
∗
n) such that

ui(a
∗
i ,a

∗
−i) ≥ ui(ai ,a

∗
−i) for all ai ∈ Ai.

holds for each playeri. The set of all Nash equilibria ofG is denotedN(G).

In a two player game, for example, an action profile(a∗1,a
∗
2) is a Nash equilibrium if the fol-

lowing two conditions hold

a∗1 ∈ arg max
ai∈A1

u1(a1,a
∗
2)

a∗2 ∈ arg max
a2∈A2

u2(a
∗
1,a2).

Therefore, we may say that, in a Nash equilibrium, each player’s choice of action is a best

response to the actions actually taken by his opponents. This suggests, and sometimes more useful,

definition of Nash equilibrium, based on the notion of the best response correspondence.3 We

define thebest response correspondenceof playeri in a strategic form game as the correspondence

Bi : A−i ⇉ Ai given by

Bi(a−i) = {ai ∈ Ai : ui(ai ,a−i) ≥ ui(bi ,a−i) for all bi ∈ Ai}.

(Notice that, for eacha−i ∈ A−i, Bi(a−i) is a set which may or may not be a singleton.) So, for

example, in a 2-person game, if player 2 playsa2, player 1’s best choice is to play some action in

B1(a2),

B1(a2) = {a1 ∈ A1 : u1(a1,a2) ≥ u2(b1,a2) for all b1 ∈ A1}.

For instance, in the game
L M R

U 1,0 1,2 0,2

D 0,3 1,1 2,0

we haveB1(L) = {U}, B1(M) = {U,D} andB1(R) = {D}, while B2(U) = {M,R} andB2(D) =

{L}.

3Mathematical Reminder: Recall that a functionf from a setA to a setB assigns to eachx ∈ A one and only one
element f (x) in B. By definition, acorrespondence ffrom A to B, on the other hand, assigns to eachx ∈ A a subset
of B, and in this case we writef : A ⇉ B. (For instance,f : [0,1] ⇉ [0,1] defined asf (x) = {y ∈ [0,1] : x ≤ y} is
a correspondence; draw the graph off .) In the special case where a correspondence is single-valued (i.e. f (x) is a
singleton set for eachx∈ A), then f can be thought of as a function.
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The following is an easy but useful observation.

Proposition 3.2. For any 2-person game in strategic form G, we have(a∗1,a
∗
2) ∈ N(G) if, and only

if

a∗1 ∈ B1(a
∗
2) and a∗2 ∈ B2(a

∗
1).

Proof. Exercise.

This proposition suggests a way of computing the Nash equilibria of strategic games. In par-

ticular, when the best response correspondence of the players are single-valued, then Proposition B

tells us that all we need to do is to solve two equations in two unknowns to characterize the set of

all Nash equilibria (once we have foundB1 andB2, that is). The following examples will illustrate.

Example 3.4. We haveN(BoS) = {(m,m),(o,o)} (and both of these equilibria are strict). Indeed,

in this game,B1(o) = {o}, B1(m) = {m}, B2(o) = {o}, andB2(m) = {m}. These observations

also show that(m,o) and (o,m) are not equilibrium points of BoS. Similar computations yield

N(CG) = {(l,l),(r,r)} andN(MW) = /0.

An easy way of finding Nash equilibrium in two-person strategic form games is to utilize the

best response correspondences and the bimatrix representation. You simply have to mark the best

response(s) of each player given the action choice of the other player and any action profile at

which both players are best responding to each other is a Nashequilibrium. In the BoS game, for

example, given player 1 plays m, the best response of player 2is to play m, which is expressed

by underscoring player 2’s payoff at (m,m), and her best response to o is o, which is expressed by

underscoring her payoff at (o,o).
m o

m 2,1 0,0

o 0,0 1,2

.

The same procedure is applied to player 1 as well. The set of Nash equilibrium is then the set of

outcomes at which both players’ payoffs are underscored, i.e.,(m,m),(o,o).

Nash equilibrium concept has been motivated in many different ways, mostly on an informal

basis. We will now give a brief discussion of some of these motivations:

Self Enforcing Agreements. Let us assume that two players debate about how they should

play a given 2-person game in strategic form through preplaycommunication. What sort of an

agreement would they reach? Of course, we cannot give a precise answer to this question before

knowing more about the specifics of the game, but this much we can say: the agreement (whatever

it is) should be “self enforcing” in the sense that no player should have a reason to deviate from

her promise if she believes that the other player will keep his end of the bargain. Put informally, a
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Nash equilibrium is an outcome that would correspond to a self enforcing agreement in this sense.

Once it is reached, no individual has an incentive to deviatefrom it unilaterally.

Social Conventions.Consider a strategic interaction played between two players, where player

1 is randomly picked from a population and player 2 is randomly picked from another population.

For example, the situation could be a bargaining game between a buyer and a seller. Now imagine

that this situation is repeated over time, each iteration being played between two randomly selected

players. If this process settles down to an action profile, that is if time after time the action choices

of players in the role of player 1 and those in the role of player 2 are always the same, then we

may regard this outcome as a convention. Even if players start with arbitrary actions, as long as

they remember how the actions of the previous players fared in the past and choose those actions

that are better, any social convention must correspond to a Nash equilibrium. If an outcome is not

a Nash equilibrium, then at least one of the players is not best responding, and sooner or later a

player in that role will happen to land on a better action which will then be adopted by the players

afterwards. Put differently, an outcome which is not a Nash equilibrium lacks a certain sense of

stability, and thus if a convention were to develop about how to play a given game through time,

we would expect this convention to correspond to a Nash equilibrium of the game.

Focal Points. Focal points are outcomes which are distinguished from others on the basis

of some characteristics. Those characteristics may distinguish an outcome as a result of some

psychological or social process and may even seem trivial, such as the names of the actions. Focal

points may also arise due to the optimality of the actions, and Nash equilibrium is considered focal

on this basis.

Learned Behavior. Consider two players playing the same game repeatedly. Also suppose that

each player simply best responds to the action choice of the other player in the previous interaction.

It is not hard to imagine that over time their play may settle on an outcome. If this happens, then it

has to be a Nash equilibrium outcome. There are, however, twoproblems with this interpretation:

(1) the play may never settle down, (2) the repeated game is different from the strategic form game

that is played in each period and hence it cannot be used to justify its equilibrium.

So, whichever of the above parables one may want to entertain, if a reasonable outcome of a

game in strategic form exists, it must possess the property of being a Nash equilibrium. In other

words, being a Nash equilibrium is anecessarycondition for a reasonable outcome. But notice

that this is a one-way statement; it would not be reasonable to claim thatanyNash equilibrium of

a given game corresponds to an outcome that is likely to be observed when the game is actually

played. (More on this shortly.)

We will now introduce two other celebrated strategic form games to further illustrate the Nash

equilibrium concept.
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Example 3.5(Stag Hunt (SH)). Two hungry hunters go to the woods with the aim of catching a

stag, or at least a hare. They can catch a stag only if both remain alert and devote their time and

energy to catching it. Catching a hare is less demanding and does not require the cooperation of

the other hunter. Each hunter prefers half a stag to a hare. Letting S denote the action of going after

the stag, and H the action of catching a hare, we can representthis game by the following bimatrix

S H

S 2,2 0,1

H 1,0 1,1

.

One can easily verify thatN(SH) = {(S,S),(H,H)}.

Example 3.6(Hawk-Dove (HD)). Two animals are fighting over a prey. The prey is worthv to

each player, and the cost of fighting isc1 for the first animal (player 1) andc for the second animal

(player 2). If they both act aggressively (hawkish) and get into a fight, they share the prey but

suffer the cost of fighting. If both act peacefully (dovish),then they get to share the prey without

incurring any cost. If one acts dovish and the other hawkish,there is no fight and the latter gets the

whole prey.

(1) Write down the strategic form of this game

(2) Assumev,c1,c2 are all non-negative and find the Nash equilibria of this gamein each of the

following cases: (a)c1 > v/2, c2 > v/2, (b) c1 > v/2, c2 < v/2, (c) c1 < v/2, c2 < v/2.

Example 3.7(Cournot Duopoly). We have previously introduced a simple Cournot duopoly model

and analyzed its outcome by applying IESD actions. Let us nowtry to find its Nash equilibria. We

will first find the best response correspondence of firm 1. Given that firm 2 producesQ2 ∈ [0,a/b],

the best response of firm 1 is found by solving the first order condition

du1

dQ1
= (a−c)−2bQ1−bQ2

which yieldsQ1 = a−c
2b − Q2

2 . (Second order condition checks sinced2u1
dQ2

1
= −2b < 0.) But notice

that this equation yieldsQ1 < 0 if Q2 > a−c
b while producing a negative quantity is not feasible for

firm 1. Consequently, we have

B1(Q2) =







a−c−bQ2
2b , if Q2 ≤

a−c
b ,

0, if Q2 > a−c
b .

and, by symmetry,
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Figure 3.1: Cournot Duopoly
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B2(Q1) =







a−c−bQ1
2b , if Q1 ≤

a−c
b ,

0, if Q1 > a−c
b .

Observe next that it is impossible that either firm will choose to produce more thana−c
b in the

equilibrium (why?). Therefore, by Proposition B, to compute the Nash equilibrium all we need to

do is to solve the following two equations:

Q∗
2 =

a−c
2b

−
Q∗

1

2
and Q∗

1 =
a−c
2b

−
Q∗

2

2
.

Doing this, we find that the unique Nash equilibrium of this game is

(Q∗
1,Q

∗
2) =

(
a−c
3b

,
a−c
3b

)

.

(See Figure 3.1) Interestingly, this is precisely the only outcome that survives the IESD actions. (Is

this a strict Nash equilibrium?)

An interesting question to ask at this point is if in the Cournot model it is inefficient for these

firms to produce their Nash equilibrium levels of output. Theanswer is yes, showing that the

inefficiency of decentralized behavior may surface in more realistic settings than the scenario of

the prisoners’ dilemma suggests. To prove this, let us entertain the possibility that firms 1 and 2

collude (perhaps forming a cartel) and act as a monopolist with the proviso that the profits earned in

this monopoly will be distributed equally among the firms. Given the market demand, the objective
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function of the monopolist is

U(Q) = (a−c−bQ)Q

whereQ = Q1+Q2 ∈ [0,2a/b]. By using calculus, we find that the optimal level of production for

this monopoly isQ= a−c
2b . (Since the cost functions of the individual firms are identical, it does not

really matter how much of this production takes place in whose plant.) Consequently,

profits of the monopolist
2

=
1
2

(

a−c−b

(
a−c
2b

)

)

)(
a−c
2b

)

=
(a−c)2

8b

while

profits of firm i in the equilibrium= ui(Q
∗
1,Q

∗
2) =

(a−c)2

9b
.

Thus, while both parties could be strictly better off had they formed a cartel, the equilibrium pre-

dicts that this will not take place in actuality. (Do you think this insight generalizes to then-firm

case?).

Remark3.2. There is reason to expect that symmetric outcomes will materialize in symmetric

games since in such games all agents are identical to one another. Consequently, symmetric equi-

libria of symmetric games is of particular interest. Formally, we define asymmetric equilibriumof

a symmetric game as a Nash equilibrium of this game in which all players play the same action.

(Note that this concept does not apply to asymmetric games.)For instance, in the Cournot duopoly

game above,(Q∗
1,Q

∗
2) corresponds to a symmetric equilibrium. More generally,if the Nash equilib-

rium of a symmetric game is unique, then this equilibrium must be symmetric.Indeed, suppose that

G is a symmetric 2-person game in strategic form with a unique equilibrium and(a∗1,a
∗
2) ∈ N(G).

But then using the symmetry ofG one may show easily that(a∗2,a
∗
1) is a Nash equilibrium ofG as

well. Since there is only one equilibrium ofG, we must then havea∗1 = a∗2.

Nash equilibrium requires that no individual has an incentive to deviate from it. In other words,

it is possible that at a Nash equilibrium a player may be indifferent between her equilibrium action

and some other action, given the other players’ actions. If we do not allow this to happen, we

arrive at the notion of astrict Nash equilibrium. More formally, an action profilea∗ is a strict Nash

equilibrium if

ui(a
∗
i ,a

∗
−i) > ui(ai ,a

∗
−i) for all ai ∈ Ai such thatai 6= a∗i

holds for each playeri.

For example, both Nash equilibria are strict in Stag-Hunt game, whereas the unique equilibrium
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of the following game, (M,R), is not strict

L R

T −1,0 0,−1

M 0,1 0,1

B 1,−1 −1,0

.

3.4 Nash Equilibrium and Dominant/Dominated Actions

Now that we have seen all the minor equilibrium concepts for games in strategic form, we

should analyze the relations between these concepts. We turn to such an analysis in this section.

It follows readily from the definitions that every strictly dominant strategy equilibrium is a

weakly dominant strategy equilibrium, and every weakly dominant strategy equilibrium is a Nash

equilibrium. Thus,

Ds(G) ⊆ Dw(G) ⊆ N(G)

for all strategic gamesG. For instance,(C,C) is a Nash equilibrium for Prisoners’ Dilemma; in fact

this is the only Nash equilibrium of this game (do you agree?).

Exercise. Show that if all players have a strictly dominant strategy ina strategic game, then

this game must have a unique Nash equilibrium.

However, there may exist a Nash equilibrium of a game which isnot a weakly or strictly

dominant strategy equilibrium; the BoS provides an exampleto this effect. What is more interesting

is that a player may play a weakly dominated action in Nash equilibrium. Here is an example:

α β
α 0,0 1,0

β 0,1 3,3

(3.1)

Here(α,α) is a Nash equilibrium, but playingβ weakly dominates playingα for both players. This

observation can be stated in an alternative way:

Proposition 3.3. A Nash equilibrium need not survive the IEWD actions.

Yet the following result shows that if IEWD actions somehow yields a unique outcome, then

this must be a Nash equilibrium in finite strategic games.

Proposition 3.4. Let G be a game in strategic form with finite action spaces. If the iterated elimi-

nation of weakly dominated actions results in a unique outcome, then this outcome must be a Nash
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equilibrium of G.4

Proof. For simplicity, we provide the proof for the 2-person case, but it is possible to generalize

the argument in a straightforward way. Let the only actions that survive the IEWD actions bea∗1
anda∗2, but to derive a contradiction, suppose that(a∗1,a

∗
2) /∈ N(G). Then, one of the players must

not be best-responding to the other, say this player is the first one. Formally, we have

u1(a
∗
1,a

∗
2) < u1(a

′
1,a

∗
2) for somea′1 ∈ A1. (3.2)

But a′1 must have been weakly dominated by some other actiona′′1 ∈ A1 at some stage of the

elimination process, so

u1(a
′
1,a2) ≤ u1(a

′′
1,a2) for eacha2 ∈ A2 not yet eliminated at that stage.

Sincea∗2 is never eliminated (by hypothesis), we then have

u1(a
′
1,a

∗
2) ≤ u1(a

′′
1,a

∗
2).

Now if a′′1 = a∗1, then we contradict (3.2). Otherwise, we continue as we did after (3.2) to obtain

an actiona′′′1 /∈ {a′1,a
′′
1} such thatu1(a′1,a

∗
2) ≤ u1(a′′′1 ,a∗2). If a′′′1 = a∗1 we are done again, otherwise

we continue this way and eventually reach the desired contradiction sinceA1 is a finite set by

hypothesis.

However, even if IEWD actions results in a unique outcome, there may be Nash equilibrium

which does not survive IEWD actions (The game given by (??) illustrates this point). Furthermore,

it is important that IEWD actions leads to a unique outcome for the proposition to hold. For

example in the BoS game all outcomes survive IEWD actions, yet the only Nash equilibrium

outcomes are (m,m) and (o,o). One can also, by trivially modifying the proof given above show that

if IESD actions results in a unique outcome, then that outcome must be a Nash equilibrium. In other

words, any finite and dominance solvable game has a unique Nash equilibrium. But how about the

converse of this? Is it the case that a Nash equilibrium always survives the IESD actions. In contrast

to the case with IEWD actions (recall Proposition C), the answer is given in the affirmative by our

next result.

Proposition 3.5. Let G be a 2-person game in strategic form. If(a∗1,a
∗
2) ∈ N(G), then a∗1 and a∗2

must survive the iterated elimination of strictly dominated actions.

4So, for instance,(1, ...,1) must be a Nash equilibrium of guess-the average game:.
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Proof. We again give the proof in the 2-person case for simplicity. To obtain a contradiction,

suppose that(a∗1,a
∗
2) ∈ N(G), but eithera∗1 or a∗2 is eliminated at some iteration. Without loss of

generality, assume thata∗1 is eliminated beforea∗2. Then, there must exist an actiona′1 ∈ A1 (not yet

eliminated at the iteration at whicha∗1 is eliminated) such that,

u1(a
∗
1,a2) < u1(a

′
1,a2) for eacha2 ∈ A2 not yet eliminated.

But a∗2 is not yet eliminated, and thus

u1(a
∗
1,a

∗
2) < u1(a

′
1,a

∗
2)

so that(a∗1,a
∗
2) cannot be a Nash equilibrium, a contradiction.

3.5 Difficulties with Nash Equilibrium

Given that the Nash equilibrium is the most widely used equilibrium concept in economic

applications, it is important to understand its limitations. We discuss some of these as the final

order of business in this chapter.

3.5.1 A Nash equilibrium may involve a weakly dominated acti on by some players.

We observed this possibility in Proposition C. Ask yourselfif (α,α) in the game (??) is a

sensible outcome at all. You may say that if player 1 is “certain” that player 2 will playα and vice

versa, then it is. But if either one of the players assigns a probability in her mind that her opponent

may playβ, the expected utility maximizing (rational) action would beto play β, no matter how

small this probability is. Since it is rare that all players are “certain” about the intended plays

of their opponents (even if pre-play negotiation is possible), weakly dominated Nash equilibrium

appears unreasonable. This leads us torefinethe Nash equilibrium in the following manner.

Definition. An undominated Nash equilibrium of a gameG in strategic form is defined as

any Nash equilibrium(a∗1, ...,a
∗
n) such that none of thea∗i s is a weakly dominated action. The set

of all undominated Nash equilibria ofG is denotedNundom(G).

Example. If G denotes the game given in (??), thenNundom(G) = {(β,β)}. On the other hand,

Nundom(G) = N(G) whereG = PD, BoS, CG. The same equality holds for the linear Cournot

model. (Question: Are all strict Nash equilibria of a game in strategic form undominated?)
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Exercise. Compute the set of all Nash and undominated Nash equilibria of the chairman’s

paradox game.

(2) Nash equilibrium need not exist.

For instance,N(MW) = /0. Thus the notion of Nash equilibrium does not help us predict how

the MW game would be played in practice. However, it is possible to circumvent this problem to

some extent by enlarging the set of actions available to the players by allowing them to “randomize”

among their actions. This leads us to the notion of amixed strategywhich we shall talk about later

in the course.

(3) Nash equilibrium need not be unique.

The BoS and CG provide two examples to this effect. This is a troubling issue in that multi-

plicity of equilibria avoids making a sharp prediction withregard to the actual play of the game.

(What do you think will be the outcome of BoS?) However, sometimes preplay negotiation and/or

conventions may provide a way out of this problem.

Preplay Negotiation.Consider the CG game and allow the players to communicate (cheap

talk) prior to the game being played. What do you think will bethe outcome then? Most people

answer this question as(r,r). The reason is that agreement on the outcome (r,r) seems in the nature

of things, and what is more, there is no reason why players should not play r once this agreement

is reached (i.e. such an agreement isself-enforcing). Thus, pure coordination games like CG can

often be “solved” via preplay negotiation. (More on this shortly.)

But how about BoS? It is not at all obvious which agreement would surface in the preplay

communication in this game, and hence, even if an agreement on either (m,m) or (o,o) would be

self-enforcing, preplay negotiation does not help us “solve” the BoS. Maybe we should learn to

live with the fact that some games do not admit a natural “solution.”

Focal Points.It has been argued by many game theorists that the story of some games isolate

certain Nash equilibria as “focal” in that certain details that are not captured by the formalism of a

game in strategic form may actually entail a clear path of play. The following will illustrate.

Example. (A Nash Demand Game) Suppose that two individuals (1 and 2) face the problem

of dividing $100 among themselves. They decide to use the following method in doing this: each

of them will simultaneously declare how much of the $100 (s)he wishes to have, and if their total

demand exceeds $100 no one will get anything (the money will then go to a charity) while they

will receive their demands otherwise (anything left on the table will go to a charity).
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We may formulate this scenario as a 2-person game in strategic form whereAi = [0,100] and

ui(x1,x2) =

{

xi , if x1 +x2 ≤ 100

0, otherwise.

Notice that we are assuming here that money is utility; an assumption which is often useful.

(Caveat: But this is not an unexceptionable assumption - what if the bargaining was between a

father and his 5 year old daughter or between two individualswho hate each other?).

• Play the game.

• Verify that the set of Nash equilibria of this game is

{(x1,x2) ∈ [0,100]2 : x1 +x2 = 100}.

• Well, there are just too many equilibria here; any divisionof $100 is an equilibrium! Thus,

for this game, the predictions made on the basis of the Nash equilibrium are bound to be very

weak. Yet, when people actually played this game in the experiments, in an overwhelming

number of times the outcome(50,50) is observed to surface. So, in this example, 50-50 split

appears to be a focal point suggesting thatequityconsiderations (which are totally missed by

the formalism of the game theory we have developed so far) mayplay a role in certain Nash

equilibrium to be selected in actual play.2

Unfortunately, the notion of a focal point is an elusive one.It is difficult to come up with a

theory for it since it is not clear what is the general principle that underlies it. The above example

provides, after all, only a single instance of it; one can think of other scenarios with a focal equi-

librium.5 It is our hope that experimental game theory (which we shall talk about further later on)

will shed light into the matter in the future.

(4) Nash equilibrium is not immune to coalitional deviations.

Consider again the CG game in which we argued that preplay negotiation would eliminate the

Nash equilibrium (1,1). The idea is that the players canjointly deviate from the outcome (1,1)

5Here is another game in strategic form with some sort of a focal point. Two players are supposed to partition the
letters A,B,C,D,E,F,G,H with the proviso that player 1’s list must contain A and player 2’s list must contain H. If their
lists do not overlap, then they both win, they lose otherwise. (How would you play this game in the place of player 1?
Player 2?) What happens very often when the game is played in the experiments is that people in the position of player
1 chooses{A,B,C,D} and people in the position of player 2 chooses{E,F,G,H}; what is going on here, how do people
coordinate so well? For more examples of this sort and a thorough discussion of focal points, an excellent reference is
T. Schelling (1960),The Strategy of Conflict, London: Oxford University Press.
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through communication that takes place prior to play), for at the Nash equilibrium outcome (r,r)

they are both strictly better off. This suggests the following refinement of the Nash equilibrium.

Definition. A Pareto optimal Nash equilibrium of a gameG in strategic form is any Nash

equilibrium a∗ = (a∗1, ...,a
∗
n) such that there does not exist another equilibriumb∗ = (b∗1, ...,b

∗
n) ∈

N(G) with

ui(a
∗) < ui(b

∗) for eachi ∈ N.

We denote the set of all Pareto optimal Nash equilibrium ofG by NPO(G).

A Pareto optimal Nash equilibrium outcome in a 2-person gamein strategic form is particularly

appealing (when preplay communication is allowed), for once such an outcome has been somehow

realized, the players would not have an incentive from deviating from it neither unilaterally (as

the Nash property requires) nor jointly (as Pareto optimality requires). As you would expect, this

refinement of Nash equilibrium delivers us what we wish to findin the CG:NPO(CG) = {(r,r)}. As

you might expect, however, the Pareto optimal Nash equilibrium concept does not help us “solve”

the BoS, for we haveNPO(BoS) = N(BoS).

The fact that Pareto optimal Nash equilibrium refines the Nash equilibrium points to the fact

that the latter is not immune tocoalitional deviations. This is because the stability achieved by

the Nash equilibrium is by means of avoiding only the unilateral deviations of each individual.

Put differently, the Nash equilibrium does not ensure that no coalition of the players will find

it beneficial to defect. The Pareto optimal Nash equilibriumsomewhat corrects for this through

avoiding defection of the entire group of the players (the so-called grand coalition) in addition to

that of the individuals (the singleton coalitions). Unfortunately, this refinement does not solve the

problem entirely. Here is a game in which the Pareto optimal Nash equilibrium doesnot refine the

Nash equilibrium in a way that deals with coalitional considerations in a satisfactory way.

Example. In the following gameG player 1 chooses rows, player 2 chooses columns and

player 3 chooses tables.

α β
a 1,1,-5 -5,-5,0

b -5,-5,0 0,2,7

if player 3 chooses U

α β
a 1,1,6 -5,-5,0

b -5,-5,0 -2,-2,0

if player 3 chooses D
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(For instance, we haveN = {1,2,3}, A3 = {U,D} andu3(a,β,D) = 0.) In this game we have

NPO(G) = {(b,β,U),(a,α,D)} = N(G),

but coalitional considerations indicate that the equilibrium (a,α,D) is rather unstable, provided that

players can communicate prior to play. Indeed, it is quite conceivable in this case that players 2

and 3 would form a coalition and deviate from(a,α,D) equilibrium by publicly agreeing to take

actionsβ and U, respectively. Since this is clearly a self-enforcingagreement, it casts doubt on the

claim that(a,α,D) is a reasonable prediction for this game.2

You probably see where the above example is leading to. It suggest that there is merit in refin-

ing even the Pareto optimal Nash equilibrium by isolating those Nash equilibria that are immune

againstall possible coalitional deviations. To introduce this idea formally, we need a final bit of

Notation. Let A = ×i∈NAi be the outcome space of ann-person game in strategic form, and

let (a1, ...,an) ∈ A. For eachK ⊆ N, we let aK denote the vector(ai)i∈K ∈ ×i∈KAi, anda−K the

vector(ai)i∈N\K ∈ ×i∈N\KAi. By (aK ,a−K), we then mean the outcome(a1, ...,an). Clearly,aK is

the profile of actions taken by all players who belong to the coalition K, and we denote the set

of all such profiles byAK (that is,AK = ×i∈KAi by definition). Similarly,a−K is the profile of

actions taken by all players who does not belong toK, andA−K is a shorthand notation for the set

A−K = ×i∈N\KAi.

Definition. A Strong Nash equilibrium of a gameG in strategic form is any outcomea∗ =

(a∗1, ...,a
∗
n) such that, for all nonempty coalitionsK ⊆ N and allaK ∈ AK, there exists a playeri ∈ K

such that

ui(a
∗
K ,a∗−K) ≥ ui(aK ,a∗−K).

We denote the set of all strong Nash equilibrium ofG by NS(G).6

While its formal definition is a bit mouthful, all that the strong Nash equilibrium concept does

is to choose those outcomes at which no coalition can find it inthe interest ofeachof its members

to deviate. Clearly, we have

NS(G) ⊆ NPO(G) ⊆ N(G)

fort any gameG in strategic form. Since, for 2-person games the notions of Pareto optimal and

strong Nash equilibrium coincide (why?), the only strong Nash equilibrium of the CG is(r,r). On

6The notion of the strong Nash equilibrium was first introduced by the mathematician and economist Robert Aumann.
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the other hand, in the 3-person game discussed above, we haveNS(G) = {(b,β,U)} as is desired

(verify!).

Unfortunately, while the notion of the strong Nash equilibrium solves some of our problems, it

is itself not free of difficulties. In particular, in many interesting games no strong Nash equilibrium

exists, for it is simply too demanding to disallow forall coalitional deviations. What we need

instead is a theory of coalition formation so that we can lookfor the Nash equilibria that are immune

to deviations by those coalitions that are likely to form. Atpresent, however, there does not exist

such a theory that is commonly used in game theory, the issue awaits much further research.7

7If you are interested in coalitional refinements of the Nash equilibrium, a good place to start is the highly readable
paper by D. Bernheim, B. Peleg and M. Whinston (1987), “Coalition-proof Nash equilibria I: Concepts,”Journal of
Economic Theory, 42, pp. 1-12.
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Chapter 4

Strategic Form Games: Applications

In this section, we shall consider several economic scenarios which are modeled well by means

of strategic games. We shall also examine the predictions that game theory provides in such sce-

narios by using some of the equilibrium concepts that we havestudied so far. One major objective

of this section is actually to establish a solid understanding of the notion of Nash equilibrium, un-

doubtedly the most commonly used equilibrium concept in game theory. We contend that the best

way of understanding the pros and cons of Nash equilibrium isseeing this concept in action. For

this reason we shall consider below quite a number of examples. Most of these examples are the

toy versions of more general economic models and we shall return to some of them in later chapters

when we are better equipped to cover more realistic scenarios.

Auctions

Many economic transactions are conducted through auctions. Governments sell treasury bills,

foreign exchange, mineral rights, and more recently airwave spectrum rights via auctions. Art

work, antiques, cars, and houses are also sold by auctions. Auction theory has also been applied to

areas as diverse as queues, wars of attrition, and lobbying contests.1

There are four commonly used and studied forms of auctions: the ascending-bid auction (also

called English auction), the descending-bid auction (alsocalled Dutch auction), the first-price

sealed bid auction, and the second-price sealed bid auction(also known as Vickrey auction2). In

theascending-bid auction, the price is raised until only one bidder remains, and that bidder wins

the object at the final price. In thedescending-bid auction, the auctioneer starts at a very high price

and lowers it continuously until the someone accepts the currently announced price. That bidder

1For a good introductory survey to the auction theory see PaulKlemperer (1999), “Auction Theory: A Guide to the
Literature,”Journal of Economic Surveys, 13(3), July 1999, pp. 227-286.

2Named after William Vickrey of Columbia University who was awarded the Nobel Prize in economics in 1996.

55
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wins the object at that price. In thefirst-price sealed bid auctioneach bidder submits her bid in a

sealed envelope without seeing others’ bids, and the objectis sold to the highest bidder at her bid.

Thesecond-price sealed bid auctionworks the same way except that the winner pays the second

highest bid.

In this section we will analyze the last two forms of auctions, not only because they are simpler

to analyze but also because under the assumptions we will work with in this section the first-price

sealed bid auction is strategically equivalent to descending bid auction and the second-price sealed

bid auction is strategically equivalent to ascending bid auction.

For simplicity we will assume there are only two individuals, players 1 and 2, who are compet-

ing in an auction for a valuable object. While this may require a stretch of imagination, it is com-

monly known that the value of the object to the playeri is vi dollars, i = 1,2, wherev1 > v2 > 0.

(What we mean by this is that playeri is indifferent between buying the object at pricevi and not

buying it.) The outcome of the auction, of course, depends onthe rules of the auctioning procedure.

In fact, identifying the precise nature of the outcomes in a setting like this (and in similar scenarios)

under various procedures is the subject matter of a very likely subfield of game theory, namely the

auction theory. In this section, our aim is to provide an elementary introduction to this topic. let

us then begin with analyzing this game theoretic scenario first under the most common auctioning

procedure.

First-price sealed bid auction

The rules of the first-price auction is such that after both players cast their bid (without observ-

ing each others’ bid), the highest bidder wins the object andpays her own bid. In case of a tie, the

object is awarded to player 1.3

Assuming that utility is money (i.e., individuals are risk neutral), this bargaining procedure

results in the 2-person game in strategic formG = (A1,A2,u1, u2) whereA1 = A2 = R+,

u1(b1,b2) =

{

v1−b1, if b1 ≥ b2

0, otherwise

and

u2(b1,b2) =

{

v2−b2, if b2 > b1

0, otherwise

for all (b1,b2) ∈ R2
+. (Herebi stands for the bid of playeri, i = 1,2).

We now wish to identify the set of Nash equilibria ofG. (In case you are wondering why we are

3There are other tie-breaking methods such as, randomly selecting a winner (by means of coin toss, say). Our choice
of the tie-breaking rule is useful in that it leads to a simpleanalysis. The reader should not find it difficult to modify the
results reported below by using other tie-breaking rules.
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not checking for dominant strategy equilibrium, note that the following analysis will demonstrate

thatDs(G) = Dw(G) = /0.) Rather than computing the best response correspondencesof the players,

we adopt here instead a direct approach towards this goal. Let us try to find what properties a Nash

equilibrium has to satisfy. We first claim that

(1) In any Nash equilibrium player 1 (the individual who values the object the most) wins the

object.

Proof: Let (b∗1,b
∗
2) be a Nash equilibrium, but for a contradiction, suppose player 1 does not win

the object. This implies thatb∗1 < b∗2 and player 1’s payoff in equilibrium is zero, i.e.u1(b∗1,b
∗
2) = 0.

Now if b∗2 ≤ v2, thenb∗2 < v1 (sincev2 < v1), and hence bidding, sayb∗2, is a strictly better response

for player 1 when player 2 is biddingb∗2. Therefore, bidding a strictly smaller amount thanb∗2
cannot be a best response for player 1. If, on the other hand,b∗2 > v2, thenu2(b∗1,b

∗
2) < 0 so that

bidding anything in the interval[0,b∗1] is a profitable deviation for player 2. In either case, then, we

obtain a contradiction to the hypothesis that(b∗1,b
∗
2) is an equilibrium. Therefore, we conclude that

in any equilibrium(b∗1,b
∗
2) of G player 1 obtains the object, that is,b∗1 ≥ b∗2.

Secondly,

(2) b∗1 > b∗2 cannot hold in equilibrium, for in this case player 1 would deviate by bidding, say,

b∗2 and increase her payoff fromv1 − b∗1 to v1 − b∗2. Together with our finding thatb∗1 ≥ b∗2, this

implies thatb∗1 = b∗2 must hold in equilibrium.

Thirdly,

(3) Neitherb∗1 < v2 norb∗1 > v1 can hold (player 2 would have a profitable deviation in the first

case, and player 1 in the second case).

So, any Nash equilibrium(b∗1,b
∗
2) of this game must satisfy

v2 ≤ b∗1 = b∗2 ≤ v1.

Is any pair(b∗1,b
∗
2) that satisfy these inequalities an equilibrium? Yes. The inequality v2 ≤ b∗1

guarantees that player 2 does not wish to win the object when player 1 bidsb1, so his action is

optimal. The inequality,b∗2 ≤ v1, on the other hand, guarantees that player 1 is also best responding.

We thus conclude that

N(G) = {(b1,b2) : v2 ≤ b1 = b2 ≤ v1}

Exercise. Verify the above conclusion by means of computing the best response correspon-

dences of the players 1 and 2, and plotting their graph in the(b1,b2) space.

While N(G) is rather a large set and hence does not lead us to a sharp prediction, refining this

set by eliminating the weakly dominated actions solves thisproblem. Indeed, it is easily verified
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that bidding anything strictly higher thanv2 is a weakly dominated action for player 2. To see this,

suppose player 2 bidsb′2 which is strictly higher thanv2. Now, if player 1’s bidb1 is greater than

equal tob′1, then player 1 wins the object and player 2’s payoff tob′2 and to bidding her valuation

v2 are both zero. If, however, player 1’s bid is strictly smaller thanb′2 but greater than or equal

to v2,then player 2 wins by biddingb′2 but obtains a negative payoff since she pays more than her

valuation. The payoff to biddingv2, on the other hand, is zero. Similarly, biddingv2 is strictly

better than biddingb′2 if player 1’s bid is strictly smaller thanv2. The following table summarizes

this discussion. (Does biddingv2 weakly dominate bids less thanv2 as well?).

b1 ≥ b′2 v2 ≤ b1 < b′2 b1 < v2

v2 0 0 0

b′2 0 v2−b′2 < 0 v2−b′2 < 0

Consequently, we have

Nundom(G) = {(v2,v2)}.

Now, there is an intriguing normative problem with this equilibrium: the first player is not

bidding his true valuation. It is often argued that it would be desirable to design an auctioning

method in which all players are induced to bid their true valuations in equilibrium. But is such a

thing possible? This question was answered in the affirmative by the economist William Vickrey

who has showed that truth-telling can be established even asa dominant action by modifying the

rules of the auction suitably. Let us carefully examine Vickrey’s modification.

Second-price sealed bid (Vickrey) auction

The rules of the second-price auction is such that after bothplayers cast their bid (without

observing each others’ bid), the highest bidder wins the object and pays the bid of the other player.

In case of a tie, the object is awarded to player 1.

Assuming that utility is money, this bargaining procedure results in the 2-person game in strate-

gic form G′ = (A1,A2,u1, u2) whereA1 = A2 = R+,

u1(b1,b2) =

{

v1−b2, if b1 ≥ b2

0, otherwise

and

u2(b1,b2) =

{

v2−b1, if b2 > b1

0, otherwise

for all (b1,b2) ∈ R2
+. (ContrastG′ with the gameG we studied above.)

We now claim thatDw(G′) = {(v1,v2)}. To see that biddingb1 = v1 is a dominant action for
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player 1, we distinguish between two cases:

Case 1. Player 2 bids strictly less thanv1 (that is,b2 < v1)

In this case, by biddingv1 player 1 wins the object and achieves a utility level ofv1−b2 > 0.

Bidding strictly less thanv1 either makes her win the object (ifb2 ≤ b1 < v1) with payoff v1−b2,

or she looses the object (ifb1 < b2 < v1) with payoff zero. So, biddingv1 is at least as good as

bidding strictly greater thanv1, and sometimes it is strictly better. Bidding strictly greater thanv1,

on the other hand, brings player 1 a payoff ofv1 − b2 > 0, the same payoff as she would get by

biddingv1.

Case 2. Player 2 bidsv1 (that is,b2 = v1)

In this case, every bid brings player 1 a payoff of zero.

Case 3. Player 2 bids strictly more thanv1 (that is,b2 > v1)

In this case, player 1 loses the object and obtains utility 0. So biddingv1 is again optimal for

player 1 since winning the object in this case would entail negative utility for him.

Consequently, biddingv1 is a dominant action for player 1. A similar reasoning shows that

biddingv2 is a dominant action for player 2, and hence we haveDw(G′) = {(v1,v2)} as is sought.

We hope you agree that this is a very nice result. Since, a weakly dominant strategy equilibrium is

also a Nash equilibrium, we also have that(v1,v2) is a Nash equilibrium. However, there are other

Nash equilibria of this game. For example(v1,0) is a Nash equilibrium too (verify).

Exercise.Generalize the above analysis by consideringn≥ 2 many individuals assuming that

the value of the object to playeri is vi dollars, i = 1, ...,n, wherev1 > · · · > vn, that the object is

given to the highest bidder with the smallest index in both the first and second-price auctions, and

that the winner pays the second highest bid in the second-price auction.

By an ingenious modification of the first-price auction, therefore, Vickrey was able to guarantee

the truthful revelation of the preferences of the agents in dominant strategy equilibrium. This

result shows that, by designing the rules of interaction carefully, one may force the individuals to

coordinate on normatively appealing outcomes, and this even without knowing the true valuations

of the individuals! Vickrey’s technique provides a foundation for the theory of implementation

which has important applications in public economics whereone frequently needs to put on the

mask of asocial engineering. We shall talk about some of these applications later on.
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Buyer-Seller Games

A seller,call him players, is in possession of an object that is worthvs dollars to him (that is,

players is indifferent between receivingvs dollars for the object and keeping the object). The value

of this object isvb dollars to a potential buyer, playerb. We assume in what follows that

vb > vs > 0.

So, since the value of the object is higher for the buyer than it is for the seller, an efficient state of

affairs demand that trade takes place. But what is the price that playerb will pay to players? The

buyer wants to pay onlyvs (well, she wants to pay nothing, but she knows that the sellerwill not

sell the object at a price strictly less thanvs) while the seller wants to chargevb. The actual price

of the object will thus be determined through the bargainingof the players. Different bargaining

scenarios would presumably lead to different equilibrium prices. To demonstrate this, we shall

consider here two such scenarios.4

Bargaining Scenario 1:Sealed-bid first-price auction

Each party proposes a price betweenvs andvb simultaneously (by means of a sealed bid). If the

price suggested by the buyerpb is strictly higherthan that proposed by the seller, sayps, then trade

takes place at pricepb, otherwise there is no trade. Assuming that utility is money,this bargaining

procedure results in the 2-person game in strategic form(Ab,As,ub,us) whereAb = As = [vs,vb],

ub(pb, ps) =

{

vb− pb, if pb > ps

0, otherwise

and

us(pb, ps) =

{

pb−vs, if pb > ps

0, otherwise

for all (pb, ps) ∈ [vs,vb]
2.

We first observe that there is no Nash equilibrium(p∗b, p∗s) in which the buyerb buys the object.

Indeed, ifp∗b > p∗s, then bidding anything betweenp∗s andp∗b (e.g. p∗b/2+ p∗s/2) would be a strictly

better response for playerb (than playingp∗b) againstp∗s.

Exercise.Consider the game described above. Show that the best response correspondence of

4It is very likely that these scenarios will strike you as unrealistic. The objective of these examples is, however, not
achieving a satisfactory level of realism, but rather to illustrate the use of Nash equilibrium in certain simple buyer-seller
games. In later chapters, we will return to this setting and consider much more realistic bargaining scenarios that involve
sequential offers and counteroffers by the players.
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playersb ands are given as

Bb(ps) =

{

/0, if ps ∈ [vs,vb)

[vs,vb], if ps = vb

and

Bs(pb) =

{

[vs, pb], if pb ∈ (vs,vb]

[vs,vb], if pb = vs

respectively. Deduce from this that the only equilibrium ofthe game is(p∗b, p∗s) = (vs,vb).

Bargaining Scenario 2:Modified sealed-bid first-price auction

Each party proposes a price betweenvs andvb simultaneously (by means of a sealed bid). If

the price suggested by the buyerpb is at least as large asthat proposed by the seller, sayps, then

trade takes place at pricepb, otherwise there is no trade. Assuming again that utility is money,

this bargaining procedure results in the 2-person game in strategic form(Ab,As,ub,us) whereAb =

As = [vs,vb],

ub(pb, ps) =

{

vb− pb, if pb ≥ ps

0, otherwise

and

us(pb, ps) =

{

pb−vs, if pb ≥ ps

0, otherwise

for all (pb, ps) ∈ [vs,vb]
2.

If you have solved the exercise above, you will find it easy to show that we have

Bb(ps) =

{

{ps}, if ps ∈ [vs,vb)

[vs,vb], if ps = vb

and

Bs(pb) =

{

[vs, pb], if pb ∈ (vs,vb]

[vs,vb], if pb = vs

in this game. Consequently,(p∗b, p∗s) ∈ Bb(p∗s)×Bs(p∗b) holds if, and only if, either(p∗b, p∗s) =

(vs,vb) (the no-trade equilibrium) orp∗b = p∗s ∈ [vs,vb] (see Figure 2).

Therefore, with a minor modification of the bargaining procedure, one is able to generate many

equilibria in which trade occurs. (This is an important observation for especially the seller, for,

in many instances, it is the seller who design the bargainingprocedure.) However, the prediction

of the Nash equilibrium in the resulting game is less than satisfactory due to the large multiplic-

ity of equilibria. (Check if undominated and/or Pareto optimal Nash equilibria provide sharper
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predictions here.)
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Price Competition Models
Game theory has many applications in the field of industrial organization. We have already

encountered one such application when we have considered insome detail the model of Cournot

duopoly in the previous chapter. Recall that in this scenario individual firms were modeled as com-

peting in the market by choosing their output levels. However, it has been argued in the literature

that this model is not entirely satisfactory, especially ifone is interested in the short-run decision

making of the firms. For, as the argument goes, in the short-run firms would find it too costly to

adjust their output level at will; it is rather through pricesetting that they engage in competition

with other firms.5 To deal with this problem, several oligopoly models in whichfirms choose their

prices (as opposed to quantities) were developed in the literature. We now briefly discuss such a

price competition model, which leads to a dramatically different conclusion than does the Cournot

model..

Bertrand Duopoly with Homogeneous Products

Consider the market structure underlying the linear Cournot model, but this time assume that

the firms in the market engage in price competition, that is, they choose how much to charge for

their products. Recalling thata is the maximum price level in the market, we thus model the action

space for firmi = 1,2 as[0,a]. The profit function of firmi on [0,a]2 in this model (called thelinear

Bertrand duopoly) is defined as

ui(P1,P2) = PiQi(P1,P2)−cQi(P1,P2),

whereQi(P1,P2) denotes the output sold by firmi at the price profile(P1,P2). If we assume that

there is no qualitative difference between the products of the two firms, it would be natural to

assume that the consumers always buy the cheaper good. In case both firms charge the same price,

we assume that firms 1 and 2 share the market equally. These assumptions entail that

Qi(P1,P2) =







a
b −

Pi
b , Pi < Pj

1
2

(
a
b −

Pi
b

)
, Pi = Pj

0, Pi > Pj

where j 6= i = 1,2, and complete the formulation of the model at hand as a 2-person game in

strategic form.

An immediate question to ask is if our prediction (based on the Nash equilibrium) about the

market outcome would be different in this model than in the linear Cournot duopoly model. The

5The argument was first given by the French mathematician Joseph Bertrand in 1883 as a critique of the Cournot
model.
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answer is easily seen to be yes. To see this, recall that in theNash equilibrium of the linear Cournot

duopoly model both firms charge the same price, namely

P1 = P2 = a−b

(
a−c
3b

)

=
2a
3

+
c
3
,

so that firm 1’s level of profits is found as

ui(P1,P2) = (P1−c)Q1(P1,P2) =

(
2(a−c)

3

)
1
2

(
a
b
−

1
b

(
2a
3

+
c
3

))

=
1
9b

(a−c)2 .

But, given thatP2 = 2a
3 + c

3, if firm 1 undercutsfirm 2 by charging a marginally smaller price

than 2a
3 + c

3, say 2a
3 + c

3 − ε whereε is some small positive number, then the profit level of firm 1

increases since this firm then grabs the entire market. Indeed, it can easily be checked that

lim
εց0

ui

(
2a
3

+
c
3
− ε,

2a
3

+
c
3

)

=
2
9b

(a−c)2 >
1
9b

(a−c)2 = ui

(
2a
3

+
c
3
,
2a
3

+
c
3

)

.

Thus, the Cournot prices cannot constitute an equilibrium for the linear Bertrand model. (How

did we conclude this, really?) The problem is that the tie-breaking rule of the Bertrand duopoly

introduces adiscontinuityto the model allowing firms to achieve relatively large gainsthrough

small alterations of their actions.6

What then is the equilibrium? The analysis outlined in the previous paragraph actually brings

us quite close to answering this question. First observe that neither firm would ever charge a price

below c as this would yield negative profits (which can always be avoided by charging exactlyc

dollars for the unit product). Thus, if the price profile(P∗
1 ,P∗

2) is a Nash equilibrium, we must

haveP∗
1 ,P∗

2 ≥ c. Is P∗
1 > P∗

2 > c possible? No, for in this case firm 1 would be making zero profits,

and thus it would better for it to charge, say,P∗
2 which will ensure positive profits given that firm

2’s price isP∗
2 . How aboutP∗

1 = P∗
2 > c? This is also impossible, because in this case either firm

can unilaterally increase its profits by undercutting the other firm (just as in the discussion above)

contradicting that(P∗
1 ,P∗

2) is a Nash equilibrium. By symmetry,P∗
2 ≥P∗

1 > c is also impossible, and

hence we conclude that at least one firm must be charging precisely its unit costc in the equilibrium.

Can we haveP∗
1 > P∗

2 = c then? No, for in this case firm 2 would not be best responding; it can

increase its profits by charging, say,P∗
1/2+ c/2. Similarly, P∗

2 > P∗
1 = c is not possible. The only

candidate for equilibrium is thus(P∗
1 ,P∗

2) = (c,c), and this is indeed an equilibrium as you can

easily check: in the Nash equilibrium of the linear Bertrandduopoly, all firms price their products

6Notice that this is the third time we are observing that the tie-breaking rule is playing an important role with regard
to the nature of equilibrium. This is quite typical in many interesting strategic games, and hence, it is always a good idea
to inquire into the suitability of a specific tie-breaking rule in such models.
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at unit cost.

This is a surprising result since it envisages that all firms operate with zero profits in the equi-

librium. In fact, the equilibrium outcome here is nothing but the competitive equilibrium outcome

which is justified in microeconomics only by hypothesizing avery large number of firms who act

as price takers (not setters) in the industry. Here, however, we predict precisely the same outcome

in equilibrium with only two price setting firms!

Remark. The major culprit behind the above finding is the fundamentaldiscontinuity that

the Bertrand game possesses. Indeed, as noted earlier, it ispossible in this game to alter one’s

action marginally (infinitesimally) and increase the associated profits significantly, given the other’s

action. Such games are calleddiscontinuousgames, and often do not possess a Nash equilibrium.

For example, if we modify the linear Bertrand model so that the unit cost of firm 1, call itc1,

exceeds that of firm 2, we obtain an asymmetric Bertrand game that does not have an equilibrium.

(Exercise: Prove this.) But this is not a severe difficulty. It arises only because we take the prices

as continuous variables in the classic Bertrand model. If the medium of exchange was discrete but

small, then there would exist an equilibrium of this game such that the high cost firm 1 charges its

unit cost (and thus make zero profits) while the low cost firm 2 would grab the entire market by

charging the lowest possible price strictly belowc1. (Challenge: Formalize and prove this claim.)

�
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Spatial Voting Games

The example of Chairman’s paradox was our first excursion into voting theory which provides

an extensive realm for fruitful applications of game theory. In this section we provide a more daring

excursion, and introduce the so-called spatial voting model.

If we think of the policy space as one-dimensional, then we can identify the set of all political

positions with the closed interval[0,1]. Here we may think of 0 as the most leftist position and

1 as the most rightist position. The interpretation of any other point in[0,1] is then given in the

straightforward way.7 Let us assume next that each voter has an ideal position in thepolitical

spectrum, and evaluate every other policy in[0,1] by looking at the distance between this point

and her ideal point. For instance, the voter with the ideal point 1/2 ∈ [0,1] likes the point 1/4

better than 1. More generally, an individual with ideal pointx in [0,1] likes the pointy better than

z iff |x−y| < |x−z| . Such preferences are calledsingle-peakedin the literature because, for any

x ∈ [0,1], the mappingy 7→ |x−y| is strictly increasing on[0,x] and strictly decreasing on[x,1].

(Plot the graph of this mapping on[0,1] and see for yourself.)

We model the society as a continuum, and posit that the voters(which can be identified with

their ideal positions in this model) are distributed uniformly over [0,1]. Thus 1/2 corresponds to

themedianideal position in the society, that is, the ideal positions of exactly half of the society lie

to the left of 1/2.

The players in a voting game are the political candidates or parties. We consider the case

in which there aren ∈ {2,3} many candidates whose problem is to decide upon which policyto

propose (or, equivalently, which position to take in the political spectrum). Each citizen votes

for the candidate who has chosen the closest position to her ideal point (because she has single-

peaked preferences), and all this is known by the candidates. We assume that the only goal of each

candidate is to win the election.8 Of course, to complete the specification of the model, we must

append to this setting a tie-breaking rule. We postulate in this regard that candidates share equally

the votes that they attract together. Each candidate prefers to win the election to a tie for the first

place, and the tie for the first place to losing the election. Losing the election may or may not be

the worst outcome for a candidate, however, depending on whether or not running in the election

7The political spectrum is of course better modeled as being multidimensional; for instance, in the national elections
voters not only care about the position of a candidate on the heath care reform but also about his/her position on the
tax policy, education reform, social security, and so on. Allowing for multidimensionality in voting models, however,
complicates matters to a considerable degree, and hence we choose to confine our attention here to the unidimensional
setting.

8Once again this is not the most realistic of assumptions. Forinstance, it would certainly be reasonable to posit that
the candidates have policy preferences on their own, and hence, care also about the policy that will be implemented in
equilibrium. However, vote maximization is certainly one of the major goals of politicians, and the above model (which
is sometimes called theDownsianmodel of political competition) is useful in identifying the implictions of such an
objective about the pre-election behavior of the candidates. It is by far the most standard in the literature.
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is costly. We take up each of these possibilities in turn.

Elections when running is not costly

Let us first consider the case where there are two political candidates. In this case the game at

hand is a 2-person game with action spacesA1 = A2 = [0,1]. The utility function for candidatei is

given as

ui(ℓ1, ℓ2) =







1, if i wins the election alone at the position profile(ℓ1, ℓ2)
1
2, if there is a tie at the position profile(ℓ1, ℓ2)

0, if i loses the election at the position profile(ℓ1, ℓ2),

whereℓ j denotes the policy chosen by candidatej = 1,2.

We wish to find the set of Nash equilibria of this voting game. Rather then computing the

best response correspondences of the players, we again launch a direct attack. (You are welcome

to verify the validity of the subsequent analysis by using the best response correspondences of the

candidates.) Suppose that(ℓ1, ℓ2) is a Nash equilibrium. Consider first the possibility that candidate

1 is winning the election at this position profile. Now noticethat if ℓ1 6= 1/2, then candidate 2 can

force a win by choosing 1/2. This is because, in this case, she gets all the votes eitherin
[

0, ℓ1+1/2
2

]

(if ℓ1 > 1/2) or in
[

ℓ1+1/2
2 ,1

]

(if ℓ1 < 1/2) which add up to more than the half of the total number

of votes. But then sinceℓ2 is a best response of candidate 2 againstℓ1, it must also guarantee a win

for her, contradicting that candidate 1 is the winner in the equilibrium outcome(ℓ1, ℓ2). Therefore,

we must haveℓ1 = 1/2. But this will not do either, because the best response of candidate 2 against

ℓ1 = 1/2 is to play 1/2 which forces a tie, contradicting again the hypothesis that candidate 1

was the winner of the election in equilibrium. Thus, candidate 1 cannot win the election alone in

equilibrium, and by symmetry, neither can candidate 2. We thus learn thatℓ1 = ℓ2 must be the

case, that is, the election is bound to end up in a tie in equilibrium. But it is easily checked that

we cannot haveℓ1 = ℓ2 6= 1/2 in equilibrium (either party would then deviate to, say, 1/2). The

only possibility of equilibrium outcome in this game is thusℓ1 = ℓ2 = 1/2, and this is indeed an

equilibrium as you can easily verify. The conclusion is thatin the unique equilibrium of the game

both parties choose the median position.9

Life gets more complicated if a third candidate decides to join the race. In the 3-person game

that obtains in this case, the action spaces areA1 = A2 = A3 = [0,1] and the utility function for

9If you are careful, you will notice that the assumption of carefully distributed individuals did not really play a role
in arriving at this conclusion. If the distribution is givenby an arbitrary continuous density functionf on [0,1] with
f (x) > 0, the equilibrium would have both parties to locate on the median of this distribution.
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candidatei is given as

ui(ℓ1, ℓ2, ℓ3) =







1, if i wins the election alone at the position profile(ℓ1, ℓ2, ℓ3)
1
2, if i there is a tie at the position profile(ℓ1, ℓ2, ℓ3)

0, if i loses the election at the position profile(ℓ1, ℓ2, ℓ3),

whereℓ j denotes the policy chosen by candidatej = 1,2,3. The equilibrium of this game is not a

trivial extension of the previous game. Indeed,(ℓ1, ℓ2, ℓ3) = (1/2,1/2,1/2) does not correspond to

a Nash equilibrium here. For, each candidate is getting approximately the 33% of the total votes at

this profile, and by moving slightly to the left (or right) of 1/2 any of the candidates can increase

her share of the votes almost to 50%. None of the candidates isthus playing optimally given the

actions of others.

It turns out that there are many Nash equilibria of this 3-person voting game. As an exam-

ple let us verify that(ℓ1, ℓ2, ℓ3) = (1/4,1/4,3/4) is an equilibrium. Begin with observing that

candidate 3 wins the election alone at this position profile.Therefore, this candidate obviously

does not have any incentive to deviate from 3/4 given that the other two candidates position them-

selves at 1/4. Does candidate 1 (hence candidate 2) has a profitable deviation? No. Given that

(ℓ1, ℓ3) = (1/4,3/4), it is readily observed that if candidate 1 chooses instead of1/4 any position

in the interval[0,1/4], then candidate 3 remains as the winner, and if she deviates toany position

in the interval[3/4,1], the candidate 2 becomes the winner alone. Less clear is the implication of

choosing a policy in the interval(1/4,3/4). The key observation here is that by doing so candidate

1 would attract the votes that belong to
[

ℓ1+1/4
2 , ℓ1+3/4

2

]

. Thus in this case candidate 1 would get ex-

actly the 25% of the total vote (see Figure 5.) But either candidate 2 (3/4 > ℓ1 ≥ 1/2) or candidate

3 (if 1/2≥ ℓ1 > 1/4) is bound to collect 37.5% of the votes in this case. Therefore, choosing 1/4

is as good as choosing any other position in[0,1] for candidate 1 given the actions of others, she

maintains a payoff level of 0 with any such choice. So, at the profile (ℓ1, ℓ2, ℓ3) = (1/4,1/4,3/4),

neither candidate 1 nor candidate 2 can force a win by means ofa unilateral deviation, and we

conclude that this outcome is a Nash equilibrium. (Challenge: Compute all the Nash equilibria of

this game.)

But in voting problems the issue of coalitions arise very naturally. So we better ask if the

equilibrium (1/4,1/4,3/4) is actually strong or not. Indeed, it is not. For, candidates1 and 2 can

jointly deviate at this profile to, say, 3/4− ε for smallε > 0, and thus force a win (which yields a

payoff of 1/2 to each). What is more, there is no strong Nash equilibrium of this game. (Challenge:

Prove this.)

Elections when running is costly

In this case, staying out is a meaningful alternative for each political candidate. Consequently,
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we model the situation as a game in strategic form by setting,for each candidatei, Ai = [0,1]∪{stay

out} and

ui(ℓ) =







1, if i wins the election alone at the position profileℓ
1
2, if i ties for the first place at the position profileℓ

0, if i stays out at the position profileℓ

−1, if i runs but loses the election at the position profileℓ

whereℓ ∈ ∏n
i=1 Ai with n∈ {2,3}.

The equilibrium analysis of this game is essentially identical to the first game considered above

whenn = 2. Consequently, we leave the related analysis as an

Exercise.Prove: Ifn= 2, the unique Nash equilibrium of the game defined above is(1/2,1/2).

Once again, life is more complicated in the 3-person scenario, but now this is not because of

the multiplicity of equilibria. On the contrary, this game has no Nash equilibrium whenn = 3. A

sketch of proof can be given as follows. First observe that, since each candidate can avoid losing

by staying out of the election, all running candidates must tie for the first place in any equilibrium.

Moreover, there cannot be only one running candidate in equilibrium, for otherwise, any other

player may choose the same location with the running candidate and forces a tie for the first place

(which is better than staying out). Similarly, it cannot be that everyone stays out in equilibrium.

Therefore, in any given equilibrium, there must exist two ormore running candidates who tie for

the first place. Consider first the possibility that there areexactly two such candidates. Then, by

the exercise above, both candidates must be choosing 1/2. But since the running candidates share

the total votes, the remaining candidate can force a win by choosing slightly to the left (or right)

of 1/2. Thus staying out cannot be a best response for this candidate, contradicting that we are at

an equilibrium. The final possibility is the case in which allthree candidates choose not to stay

out and tie for the first place. Suppose that(ℓ1, ℓ2, ℓ3) is such an equilibrium. Ifℓ1 = ℓ2 = ℓ3, any

one of the candidates can profitably deviate and force a win (why?), so at least two components

of (ℓ1, ℓ2, ℓ3) must be distinct. Suppose thatℓ1 6= ℓ2 = ℓ3. In this case, candidate 1 can force a

win by getting very close toℓ2 (see this?), and hence she cannot be best responding in the profile

(ℓ1, ℓ2, ℓ3). The two other possibilities in which exactly two componentsof (ℓ1, ℓ2, ℓ3) are distinct

are ruled out similarly. We are then left with the following final possibility:ℓ1 6= ℓ2 6= ℓ3 6= ℓ1. To

rule out this case as well, we pick the leftist candidate, call her i (so we haveℓi = min{ℓ1, ℓ2, ℓ3}),

and observe that this candidate can force a win by choosing a position very close to the median

of {ℓ1, ℓ2, ℓ3}. So, finally, we can conclude that there does not exist a Nash equilibrium for the

3-person voting game at hand.
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The following table summarizes our findings in the four spatial voting games we have examined

above.

The number of candidates

2 3

Running is costly
the only equilibrium

is the median position
a Nash equilibrium does not exist

not costly
the only equilibrium

is the median position

there are many Nash equilibria but a

strong Nash equilibrium does not exist

It is illuminating to observe how seemingly minor alterations in these voting models result in such

vast changes in the set of equilibria.



Chapter 5

Mixed Strategy Equilibrium

5.1 Introduction

Up to now we have assumed that the only choice available to players was to pick an action from

the set of available actions. In some situations a player maywant to randomize between several

actions. If a player chooses which action to play randomly, we say that the player is using amixed

strategy, as opposed to apure strategy. In a pure strategy the player chooses an action for sure,

whereas in a mixed strategy, she chooses a probability distribution over the set of actions available

to her. In this section we will analyze the implications of allowing players to use mixed strategies.

As a simple illustration, consider the following matching-pennies game.

H T

H 1,−1 −1,1

T −1,1 1,−1

If we restrict players’ strategies only to actions, as we have done so far, this game has no Nash

equilibrium (check), i.e., it has no Nash equilibrium in pure strategies. Since we have argued that

Nash equilibrium is a necessary condition for a steady state, does that mean that the matching-

pennies game has no steady state? To answer this question letus allow players to use mixed

strategies. In particular, let each player playH andT with half probability each. We claim that

this choice of strategies constitute a steady-state, in thesense that if each player predicts that the

other player will play in this manner, then she has no reason not to play in the specified manner.

Since player 2 playsH with probability 1/2, the expected payoff of player 1 if she playsH is

(1/2) (1) + (1/2) (−1) = 0. Similarly, the expected payoff to actionT is 0. Therefore, player 1

has no reason to deviate from playingH andT with probability 1/2 each. Similarly, if player 2
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predicts that player 1 will playH andT with half probability each, she has no reason to deviate

from doing the same. This shows that the strategy profile where player 1 and 2 playH and T

with half probability each is a steady-state of this situation. We say that playingH andT with

probabilities 1/2 and 1/2 respectively constitutes a mixed strategy equilibrium ofthis game.

If we assume that players repeatedly play this game and forecast each other’s action on the

basis of past play, then each player actually has an incentive to adopt a mixed strategy with these

probabilities. If, for example, player 1 playsH constantly, rather than the above mixed strategy,

then it is reasonable that player 2 will come to expect him to play H again and play her best

response, which isT. This will result in player 1 getting−1 as long as he continues playingH.

Therefore, he should try to be unpredictable, for as soon as his opponent becomes able to predict

his action, she will be able to take advantage of the situation. Therefore, player 1 should try to

mimic playing a mixed strategy by playingH andT with frequencies 1/2 and 1/2.

Consider the Hawk-Dove game for a another motivation.

H D

H 0,0 6,1

D 1,6 3,3

Suppose each period two randomly selected individuals, whoboth belong to a large population,

play this game. Also suppose that 3/4 of the population playsH (is hawkish) and 1/4 playsD

(is dovish), but no player can identify the opponent’s type before the game is played. We claim

that this is a stable population composition. Since the opponent is chosen randomly from a large

population, each player expects the opponent to playH with probability 3/4 andD with probability

1/4. Would a dovish player do better if she were a hawkish player? Well, on average a dovish player

gets a payoff of(3/4) (1)+(1/4) (3) = 3/2. A hawkish player gets(3/4) (0)+(1/4) (6) = 3/2 as

well. Therefore, neither type of player has a reason to change his behavior.

5.2 Mixed Strategies and Expected Payoffs

Definition. A mixed strategyαi for playeri, is a probability distribution over his set of available

actions,Ai. In other words, if playeri hasmactions available, a mixed strategy is anmdimensional

vector
(
α1

i ,α2
i , . . . ,αm

i

)
such thatαk

i ≥ 0, for all k = 1,2, . . .m, and∑m
k=1 αk

i = 1.

We will denote byαi (ai) the probability assigned to actionai by the mixed strategyαi . Let

△(X) denote the set of all probability distributions on a setX. Then, any mixed strategyαi for

player i is an element of△(Ai) , i.e., αi ∈ △(Ai) . Following the convention we developed for

action profiles, we will denote byα = (αi)i∈N a mixed strategy profile, i.e., a mixed strategy for
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each player in the game. To denote the strategy profile in which playeri playsα′
i and the rest of the

players playα∗
j , j 6= i, we will use

(
α′

i ,α∗
−i

)
. Unless otherwise stated, we will assume that players

choose their mixed strategies independently.

Notice that not all actions have to receive a positive probability in a mixed strategy. Therefore,

it is also possible to see pure strategies as degenerate mixed strategies, in which all but one action

is played with zero probability.

Let us illustrate these concepts by using the Battle of the Sexes game that we introduced before:

m o

m 2,1 0,0

o 0,0 1,2

.

A possible mixed strategy for player 1 is(1/2,1/2) , or α1(m)= α1(o)= 1/2. Another is(1/3,2/3) ,

or α1(m) = 1/3,α1 (o) = 2/3. For player 2, we may have(2/3,1/3) , i.e.,α2 (m) = 2/3,α2 (o) =

1/3, as a possible mixed strategy. A mixed strategy profile could be ((1/2,1/2) ,(2/3,1/3))

another could be((1/3,2/3) ,(2/3,1/3)) . Notice that we always haveα1 (o) = 1−α1 (m) and

α2 (o) = 1−α2 (m) simply because probabilities have to add up to one. Therefore, sometimes we

may want to simplify the notation by defining, sayp ≡ α1 (m) , q ≡ α2 (m) , and using(p,q) to

denote a strategy profile, where player 1 choosesm with probability p and actiono with probabil-

ity 1− p, and player 2 choosesm with probability q and actiono with probability 1− q. Notice,

if there were 3 actions for a player, then we would need at least two numbers to specify a mixed

strategy for that player.

Once we allow players to use mixed strategies, the outcomes are not deterministic anymore. For

example if both players playmwith probability 1/2 in the BoS game, then each action profile is ob-

tained with probability 1/4. Therefore, we have to specify players’ preferences over lotteries, i.e.,

over probability distributions over outcomes, rather thanpreferences over certain outcomes. We

will assume that players’ preferences satisfy the assumptions ofVon Neumann and Morgenstern

so that the payoff to an uncertain outcome is the weighted average of the payoffs to underlying

certain outcomes, weight attached to each outcome being theprobability with which that outcome

occurs. (See Dutta, P., ch. 27 for more on this). In other words, we assume that for each playeri,

there is a payoff functionui defined over the certain outcomesa ∈ A, such that the player’s pref-

erences over lotteries onA can be represented by the expected value ofui . If each outcomea∈ A

occurs with probabilityp(a) , then the expected payoff of playeri is

ui (p) ≡ ∑
a∈A

p(a)ui (a) .
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Example 5.1. For example, in the BoS game if each playeri plays the mixed strategyαi , then the

expected payoff of playeri is given by

u1 (α1,α2) = α1 (m)α2 (m)ui (m,m)+ α1 (m)α2 (o)ui (m,o)

+ α1(o)α2 (m)ui (o,m)+ α1(o)α2 (o)ui (o,o)

= α1 (m) [α2(m)ui (m,m)+ α2(o)ui (m,o)]

+ α1(o) [α2 (m)ui (o,m)+ α2(o)ui (o,o)]

= α1 (m)u1 (m,α2)+ α1(o)u1 (o,α2) ,

or,

u1 (α1,α2) = α1 (m)α2 (m)(2)+ α1(m)α2 (o)ui (m,o)(0)

+ α1(o)α2 (m)(0)+ α1 (o)α2(o) (1)

= 2α1 (m)α2(m)+ α1(o)α2 (o) ,

and that of player 2 is

u2 (α1,α2) = α1 (m)α2 (m)+2α1 (o)α2 (o) .

Notice that, sinceαi (o) = 1−αi (m) , we can write these expected payoffs as

u1 (α1,α2) = 2α1 (m)α2(m)+ (1−α1(m))(1−α2(m))

= 1−α2(m)+ α1(m) [3α2 (m)−1]

and

u2 (α1,α2) = 2−2α1 (m)+ α2(m) [3α1 (m)−2] .

For example, if player 1 playsm for sure, i.e.,α1(m) = 1, and player 2 playsm with probability

1/3, then

u1 (α1,α2) = 1−1/3+1[3× (1/3)−1]

= 2/3

and

u2 (α1,α2) = 2−2(1)+ (1/3) [3(1)−2]

= 1/3.
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Definition. Thesupport of a mixed strategyαi is the set of actions to whichαi assigns a positive

probability, i.e.,

supp(αi) = {ai ∈ Ai : αi (ai) > 0} .

In the above example we have,supp(α1) = {m} , andsupp(α2) = {m,o} .

5.3 Mixed Strategy Equilibrium

Definition. Best response correspondenceof player i is the set of mixed strategies which are

optimal given the other players’ mixed strategies. In otherwords:

Bi (α−i) = arg max
αi∈△(Ai)

ui (αi ,α−i) .

Example 5.2. Supposeα2 (m) = 1/2. Then, we have

u1 (α1,(1/2,1/2)) = 1−1/2+ α1 (m) [3(1/2)−1]

=
1
2

+
1
2

α1 (m)

therefore,

B1((1/2,1/2)) = {(1,0)} .

In general, lettingp ≡ α1 (m) , andq ≡ α2 (m) , we can express the best response of player 1 in

terms of optimal choice ofp in response toq

B1(q) =







{1} , if q > 1/3

[0,1] , if q = 1/3

{0} , if q < 1/3

.

The best response correspondence of player 2, i.e., optimalchoices ofq in response top, is

B2(p) =







{1} , if p > 2/3

[0,1] , if q = 2/3

{0} , if q < 2/3

.

[See Figure 1.]

Definition. A mixed strategy equilibrium is a mixed strategy profile(α∗
1, . . . ,α∗

n) such that, for all
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Figure 5.1: Best Response Correspondences in BoS game

i = 1, . . . ,n

α∗
i ∈ arg max

αi∈△(Ai)
ui
(
αi ,α∗

−i

)

or

α∗
i ∈ Bi

(
α∗
−i

)
.

In the Battle of the Sexes game, then, the set of mixed strategy Nash equilibria is

{((1,0) ,(0,1)) ,((0,1) ,(1,0)) ,((2/3,1/3) ,(1/3,2/3))} .

Alternatively, we may say that the set of mixed strategy equilibria is

{(α1 (m) ,α2 (m)) : (1,0) ,(0,1) ,(2/3,1/3)} .

Remark5.1. A mixed strategyαi is a best response toα−i if and only if every action in the support

of αi is itself a best response toα−i. Otherwise, playeri could transfer probability from the action

which is not a best response to an action which is a best response and strictly increase his payoff.

Remark5.2. This suggests an easy way to find mixed strategy Nash equilibrium. A mixed strategy

profile α∗ is a mixed strategy Nash equilibrium if and only if for each player i, each action in the

support ofα∗
i is a best response toα∗

−i . In other words, each action in the support ofα∗
i yields the

same expected payoff when played againstα∗
−i , and no other action yields a strictly higher payoff.

Remark5.3. One implication of the above remark is that a nondegenerate mixed strategy equilib-
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rium is not strict.

Example 5.3. In the BoS game, if(α∗
1,α∗

2) is a mixed strategy equilibrium withsupp(α∗
1) =supp(α∗

2)=

{m,o}, then it must be that the expected payoffs tom ando are the same for both player against

α∗
−i . In other words, for player 1

2α∗
2 (m) = 1−α∗

2(m)

and for player 2

α∗
1 (m) = 2−2α∗

1 (m)

which imply that

α∗
2 (m) = 1/3

α∗
1 (m) = 2/3

Proposition 5.1. Every finite strategic form game has a mixed strategy equilibrium.

5.4 Dominated Actions and Mixed Strategies

In earlier lectures we defined an action to be weakly or strictly dominated, only if there existed

another action which weakly or strictly dominated that action. However, it is possible that an action

is not dominated by any other action, yet it is dominated by a mixed strategy.

Definition. In a strategic form game, playeri’s mixed strategyα∗
i strictly dominates her actiona′i

if

ui (αi ,a−i) > ui
(
a′i ,a−i

)
for all a−i ∈ A−i.

Example 5.4. Consider the following game,

L R

T 1,1 1,0

M 3,0 0,3

B 0,1 4,1

.

Clearly, no action dominatesT, but the mixed strategyα1 (M) = 1/2, α1(B) = 1/2 strictly domi-

natesT.

Remark5.4. A strictly dominated action is never used with positive probability in a mixed strategy

equilibrium
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To find the mixed strategy equilibria in games where one of theplayers have more than two

actions one should first look for strictly dominated actionsand eliminate them. (see example 118.2

in Osborne chapter 4 on my web page).



Chapter 6

Bayesian Games

So far we have assumed that all players had perfect information regarding the elements of a

game. These are called games with complete information. A game with incomplete information,

on the other hand, tries to model situations in which some players have private information before

the game begins. The initial private information is called thetype of the player. For example, types

could be the privately observed costs in an oligopoly game, or privately known valuations of an

object in an auction, etc.

6.1 Preliminaries

A Bayesian gameis a strategic form game with incomplete information. It consists of:

• a set of players,N = {1, . . . ,n} ,

and for eachi ∈ N

• an action set,Ai, (A = ×i∈NAi)

• a type set,Θi , (Θ = ×i∈NΘi)

• a probability function,

pi : Θi →△(Θ−i)

• a payoff function,

ui : A×Θ → R.
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The functionpi summarizes what playeri believes about the types of the other players given her

type. So,pi (θ−i |θi) is the conditional probability assigned to the type profileθ−i ∈ Θ−i . Similarly,

ui (a|θ) is the payoff of playeri when the action profile isa and the type profile isθ.

We call a Bayesian gamefinite if N, Ai andΘi are all finite, for alli ∈ N. A pure strategy for

playeri in a Bayesian game is a function which maps playeri’s type into her action set

ai : Θi → Ai,

so thatai (θi) is the action choice of typeθi of playeri.

A mixed strategy for playeri is

αi : Θi →△(Ai)

so thatαi (ai |θi) is the probability assigned byαi to actionai by typeθi of playeri.

Suppose there are two players, player 1 and 2 and for each player there are two possible types.

Playeri’s possible types areθi andθ′i . Suppose that the types are independently distributed and the

probability ofθ1 is p and the probability ofθ2 is q. For a given pure strategy profilea∗ the expected

payoff of player 1 of typeθ1 is

qu1 (a∗1 (θ1) ,a
∗
2 (θ2) |θ1,θ2)+ (1−q)u1

(
a∗1(θ1) ,a∗2

(
θ′2
)
|θ1,θ′2

)
.

Similarly, for a given mixed strategy profileα∗ the expected payoff of player 1 of typeθ1 is

q ∑
a∈A

α∗
1 (a1|θ1)α∗

2 (a2|θ2)u1 (a1,a2|θ1,θ2)+ (1−q) ∑
a∈A

α∗
1 (a1|θ1)α∗

2

(

a2|θ
′

2

)

u1
(
a1,a2|θ1,θ′2

)

6.2 Bayesian Equilibrium

Definition. A Bayesian equilibrium of a Bayesian game is a mixed strategy profileα = (αi)i∈N ,

such that for every playeri ∈ N and every typeθi ∈ Θi , we have

αi (.|θi) ∈ arg max
γ∈△(Ai)

∑
θ−i∈Θ−i

pi (θ−i|θi) ∑
a∈A

(

∏
j∈N\{i}

α j (a j |θ j)

)

γ(ai)ui (a|θ) .

Remark6.1. Type, in general, can be any private information that is relevant to the player’s decision

making, such as the payoff function, player’s beliefs aboutother players’ payoff functions, her

beliefs about what other players believe her beliefs are, and so on.

Remark6.2. Notice that, in the definition of a Bayesian equilibrium we need to specify strategies

for each type of a player, even if in the actual game that is played all but one of these types are
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non-existent. This is because, given a player’s incompleteinformation, analysis of that player’s

decision problem requires us to consider what each type of the other players would do, if they were

to play the game.

6.3 Some Examples

6.3.1 Large Battle of the Sexes with incomplete information

Suppose player 2 has perfect information and two typesl andh. Type l loves going out with

player 1 whereas typeh hates it. Player 1 has only one type and does not know which type is player

2. Her beliefs place probability 1/2 on each type. The following tables give the payoffs to each

action and type profile:
B S

B 2,1 0,0

S 0,0 1,2
typel

B S

B 2,0 0,2

S 0,1 1,0
typeh

We can represent this situation as a Bayesian game:

• N = {1,2}

• A1 = A2 = {B,S}

• Θ1 = {x} ,Θ2 = {l ,h}

• p1 (l |x) = p1 (h|x) = 1/2, p2 (x|l) = p2 (x|h) = 1.

• u1,u2 are given in the tables above.

Since player 1 has only one type (i.e., his type is common knowledge) we will omit references

to his type from now on.

Let us find the Bayesian equilibria of this game by analyzing the decision problem of each

player of each type:

Player 2 of type l: Given player 1’s strategyα1, his expected payoff to

• actionB is α1 (B) ,

• actionS is 2(1−α1(B))

so that his best response is to playB if α1 (B) > 2/3 and to playS if α1 (B) < 2/3.

Player 2 of type h: Given player 1’s strategyα1, his expected payoff to
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• actionB is (1−α1(B)) ,

• actionS is 2α1 (B)

so that his best response is to playB if α1 (B) < 1/3 and to playS if α1 (B) > 1/3.

Player 1: Given player 2’s strategyα2 (.|l) andα2 (.|h) , her expected payoff to

• actionB is
1
2

α2 (B|l)(2)+
1
2

α2 (B|h) (2) = α2 (B|l)+ α2(B|h) ,

• actionS is

1
2

(1−α2(B|l))(1)+
1
2

(1−α2(B|h))(1) = 1−
α2 (B|l)+ α2(B|h)

2
.

Therefore, her best response is to playB if α2 (B|l)+α2 (B|h) > 2/3 and to playS if α2 (B|l)+

α2 (B|h) < 2/3.

Let us first check if there is a pure strategy equilibrium in which both types of player 2 play

B, i.e. α2 (B|l) = α2 (B|h) = 1. In this case player 1’s best response is to playB as well to which

playingB is not a best response for player 2 typeh. Similarly check thatα2(B|l) = α2 (B|h) = 0 and

α2 (B|l) = 0 andα2 (B|h) = 1 cannot be part of a Bayesian equilibrium. Let’s check ifα2(B|l) = 1

andα2 (B|h) = 0 could be part of an equilibrium. In this case player 1’s bestresponse is to playB.

Player 2 typel ’s best response is to playB and that of typeh is S. Therefore,

(α1 (B|x) ,α2 (B|l) ,α2 (B|h)) = (1,1,0)

is a Bayesian equilibrium.

Clearly, there is no equilibrium in which both types of player 2 mixes. Suppose only typel

mixes. Then,α1 (B) = 2/3, which implies thatα2 (B|l)+ α2 (B|h) = 2/3. This, in turn, implies

thatα2 (B|h) = 0. Sinceα2 (B|h) = 0 is a best response toα1 (B|x) = 2/3, the following is another

Bayesian equilibrium of this game

(α1(B) ,α2 (B|l) ,α2 (B|h)) = (2/3,2/3,0) .

As an exercise show there is one more equilibrium given by

(α1(B) ,α2 (B|l) ,α2 (B|h)) = (1/3,0,2/3) .
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6.3.2 Cournot Duopoly with incomplete information.

The profit functions are given by

ui = qi (θi −qi −q j) .

Firm 1 has one typeθ1 = 1, but firm 2 has private information about its typeθ2. Firm 1 believes

thatθ2 = 3/4 with probability 1/2 andθ2 = 5/4 with probability 1/2, and this belief is common

knowledge.

We will look for a pure strategy equilibrium of this game. Firm 2 of typeθ2’s decision problem

is to

max
q2

q2(θ2−q1−q2)

which is solved at

q∗2 (θ2) =
θ2−q1

2
.

Firm 1’s decision problem, on the other hand, is

max
q1

{
1
2

q1 (1−q1−q∗2(3/4))+
1
2

q1 (1−q1−q∗2(5/4))

}

which is solved at

q∗1 =
2−q∗2(3/4)−q∗2(5/4)

4
.

Solving yields,

q∗1 =
1
3
,q∗2 (3/4) =

11
24

,q∗2 (5/4) =
5
24

.



84 Bayesian Games



Chapter 7

Extensive Form Games with Perfect

Information

7.1 Extensive Form Games

So far we have assumed that players, when taking their actions, either did so simultaneously,

or without knowing the action choice of the other players. Although, this modelling assumption

might be appropriate in some settings, there are many situations in the world of business and poli-

tics that involve players moving sequentially after observing what the other players have done. For

example, a bargaining situation between a seller and a buyermay involve the buyer making an offer

and the seller, after observing the buyer’s offer, either accepting or rejecting it. Or imagine an in-

cumbent senator deciding whether to run an expensive ad campaign for the upcoming elections and

a potential challenger deciding whether to enter the race ornot, after observing the campaign deci-

sion of the incumbent. Both of these situations involve a player choosing an action after observing

the action of the other player.

Theextensive formof a game, as opposed to the strategic form, provides a more appropriate

framework to analyze certain interesting questions that arise in strategic interactions that involve

sequential moves.

7.1.1 Game Trees

As you now very well know, strategic form of a game has three ingredients: (1) the set of

players, (2) the set of actions, and (3) the payoff functions. The extensive form provides a richer

specification of a strategic interaction by specifyingwho moveswhen doingwhat and withwhat
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information . The easiest way to represent an extensive form game is to useagame tree, which is

a multi-person generalization of a decision tree.

To illustrate, let us go back to the bargaining example aboveand assume that the buyer moves

first by offering either $500 or $100 for a product that she values $600. The seller, for whom

the value of the object is $50, responds by either accepting (A) or rejecting (R) the offer. We can

represent this situation by the game tree in Figure 7.1.
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Figure 7.1: Bargaining Game

Game trees are made up of

• nodes

• branches

• information sets

• player labels

• action labels

and

• payoffs.

Nodesare of two types:Decision nodesrepresent the points in the game at which players

make a decision, i.e., choose an action, or a strategy in general. As any other tree, a game tree has

a root and it is useful to distinguish the root, which we will call the initial node, from the other

decision nodes (it is represented by an open circle whereas all the other nodes are represented by

closed circles). To each decision node, including the initial node, one, and only one, player label

is attached, to indicate who moves at that particular decision node. The second type of nodes are

calledterminal nodesand at these nodes the game is over and nobody takes any actionanymore.

To each terminal node apayoff vector is appended.
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From each decision node, one or more branches emanate, each branch representing an action

that can be taken by the player who is to move at that node. Eachsuch branch is labelled with the

action that it represents. A branch either leads to another decision node or to a terminal node.

The last component that we have to talk about is theinformation sets. Information sets tell us

what the players know when they are making a decision. They are collections of decision nodes of

a player that cannot be distinguished from the perspective of that player. We can illustrate it using

the bargaining example under the assumption that the seller, somehow, does not observe the buyer’s

offer before deciding whether to accept or reject it. We depict this informational assumption by

connecting the two decision nodes of the seller with a dashedline (see Figure 7.2).
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Figure 7.2: Bargaining Game with Imperfect Information

Notice that the actions available to the seller at the two nodes that are in the same information

set must be the same, otherwise the seller would be able to distinguish between them by just looking

at the actions available to her.

In this section we will deal with extensive form games with perfect information in which every

player can distinguish between any two decision nodes and hence we will not have to worry about

information sets.

7.1.2 Strategies

Strategies in a strategic form game are either action choices or probability distributions over

actions. In an extensive form game, description of a strategy is more involved since players may

have to choose actions at several points in the game. Therefore, apure strategy of a player in an

extensive form game has to specify an action choice at every decision node of that player. In that

sense, a strategy is a complete plan of action, so complete that if it was handed over to a computer,

the computer would know what to do under every contingency. We denote a pure strategy of player

i by si , and the set of all pure strategies bySi .

For example, in the extensive form game in Figure 1, a pure strategy for the buyer is easy

enough: it has to specify what price to offer at the initial node. A pure strategy for the seller, on the

other hand, has to specify an action at each decision node shemay be called upon to move. So, the
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buyer has two pure strategies available to her: 100 and 500, and henceSB = {100,500}. The seller,

however, has four pure strategies: (1)AA, (2)AR, (3)RA, (4)RR, and henceSS= {AA,AR,RA,RR}.

The extensive form strategies sometimes lead to confusion.Let us try to illustrate why, by

looking at the extensive form game in Figure 7.3.
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Figure 7.3: Another Extensive Form Game

A strategy for player 1 in this game has to specify an action atevery decision node she has,

and there are two such nodes. She, therefore, has four strategies: LL′, LR′, RL′, RR′. Notice that

the first two strategies specify an action even at player 1’s second decision node which would not

be reached if those strategies were implemented. The reasonwhy, will become clear in the next

section, after we analyze the optimal behavior of players. For now, let us look at the game tree of

the senate-race game (see Figure 7.4) to further illustratethe concepts introduced so far.
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Figure 7.4: Senate-Race Game

In this gameSI = {A,N} andSC = {ee,en,ne,nn} .

7.2 Backward Induction Equilibrium

As in the strategic form games, the equilibrium concept in extensive form games is based upon

the idea that each player plays a best response to the play of the other players. The difference is

that we now require strategies to be optimal at every step in the game. Thebackward induction

equilibrium is an algorithm that results in a recommendation of an actionchoice at every decision
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node with the property that if every player follows those recommendations their strategies would

be optimal at every decision node theymaybe called upon to move. This will also result in a path

of play (i.e., a sequence of branches) which will be called thebackward induction outcome.

The algorithm is really simple. You, the game theorist, go tothe final decision nodes and

determine the best action available to the players who are tomove at those nodes. Since there is

no more moves after players make their moves at these decision nodes, this boils down to choosing

the action that leads to the highest payoff for the player whois moving. (If there is a tie between

two actions that lead to the highest payoff, you may simply choose one of them.) After you have

done that, you prune all the actions that are not chosen (or just indicate the ones that are chosen by

an arrow-head) and go to the penultimate decision nodes to determine the optimal action at those

nodes. You continue in this manner until you reach to the initial node and determine the optimal

action there.

For example, in the bargaining game we start with the seller’s decision nodes which are the

final decision nodes in the game tree. Since accepting both offers is optimal we mark the branches

labelledA by arrow-heads. Once we do that, it is easily seen that the best action for player 1 is to

offer $100. Therefore, the backward induction equilibriumof the bargaining game is(100,AA) and

the backward induction outcome is(100,A) . (See Figure 7.5) The backward induction equilibrium

of the senate race game is(A,ne) and its backward induction outcome is(A,n) . (See Figure 7.6).
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Figure 7.5: Bargaining Game
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Figure 7.6: Senate-Race Game

As an exercise verify that the backward induction equilibrium of the game in Figure 7.3 is

(LR′, r) . This example illustrates why player 1’s strategy had to specify an action even after she
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has previously chosenL. WhetherL is optimal or not for player 1 depends on what she believes

that player 2 will do. If she believes that player 2 is going tochoosel , thenL is not optimal. But,

whether player 2 will choosel or not depends on what player 2 believes that player 1 is goingto

do in her last decision node. Therefore, to determine the optimal action for player 1 at her first

decision node, we have to specify what she intends to do at herlast decision node.
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7.2.1 Commitment and Mover Advantages

The bargaining and the senate-race games illustrate an important phenomenon that arise in

many extensive form games, i.e.,the power of commitment. Suppose that the seller could, some-

how, commit herself to accepting only the offer 500 and that this is known to the buyer. Now, given

that knowledge, the best that the buyer can do is to actually offer 500, because otherwise her offer

will be rejected and she will receive 0, whereas offering 500gives her 100. Therefore, public, and

credible, commitments could increase a player’s payoff in an extensive form game. Notice that this

is similar to eliminating actionA after the offer 100. This is in stark contrast to the single individual

decision making problems where eliminating an action can never improve one’s payoff.

Similarly, in the senate-race game, if the challenger couldpublicly commit to entering the race

irrespective of the campaign decision of the incumbent, thebest thing the incumbent could do

would be not to run campaign ads and hence the challenger would respond by entering the race and

obtaining a payoff of 4 rather than 3 that she was getting in the backward induction equilibrium.1

Another interesting phenomenon that arise in certain extensive form games is that offirst

mover advantage. For example, in the senate-race game, when the incumbent moves first, both

players obtain a payoff of 3 in the backward induction equilibrium. Now, let us change the order

of the moves so that it is the challenger who moves first so thatwe obtain the game tree depicted

in Figure 7.8.

1See Thomas Schelling (1960),The Strategy of Conflict, for an excellent account of the idea of credible commitments.
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Figure 7.8: Modified Senate-Race Game

The backward induction equilibrium of this game is(e,NN) which yields a payoff of 4 to the

challenger and a payoff of 2 to the incumbent. Therefore, if they had the chance, both players would

prefer to move first in this game. This is similar to the idea behind the power of commitment. By

choosinge the challenger commits herself to entering whatever the incumbent does.

However, not all games have a first mover advantage. Quite to the contrary, some games have

second mover advantage. Consider a game in which the incumbent (who belongs to a rightist

party) and the challenger (who belongs to a leftist party) ina senate race are choosing political

platforms; either a leftist or a rightist one. Suppose that if both of them choose the same platform

the incumbent wins the elections, whereas if they choose different platforms it is the challenger

who wins. The candidates mostly care about winning, but theyalso would like to win (or lose)

without compromising their political views. The game tree in Figure 7.9 depicts the situation if

it is the incumbent who moves first, whereas the one in Figure 7.10 reverses the order of moves.

Verify that this game exhibits second mover advantage.
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Figure 7.9: Senate-Race Game II
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7.3 Game Trees: A More Formal Treatment

A game tree is a collection of nodes, calledT, and a binary relation between the nodes called

a precedencerelation, denoted≻. Given two nodesα andβ in the game tree,α ≻ β means thatα
precedesβ. Using this relation, we can define the set of predecessors ofα as

P(α) = {t ∈ T : t ≻ α}

and the set of successors as

S(α) = {t ∈ T : α ≻ t} .

The setP(α) is simply the set of nodes from which one can go (through a sequence of branches)

to α. Similarly, the set of successors ofα is the set of nodes to which one can go starting fromα.

The precedence relation≻

1. is asymmetric, i.e., there exists noα,β ∈ T such thatα ≻ β andβ ≻ α;

2. is transitive, i.e.,α ≻ β andβ ≻ γ impliesα ≻ γ;

3. there is a common predecessor to any two non-initial nodes, i.e., for allα,β ∈T, with P(α) 6=

/0 andP(β) 6= /0, there exists aγ ∈ T such thatγ ∈ P(α) andγ ∈ P(β) .

4. and satisfies the following property

If α ≻ γ andβ ≻ γ, then eitherα ≻ β or β ≻ α.

The first two conditions guarantee that there are no cycles inthe game tree, while the third

condition guarantees that there is a unique initial node. The last condition guarantees that starting

from any node there is a unique path back to the initial node.

Theorem 7.1. Kuhn’s (Zermelo’s Theorem). Every finite extensive form game with perfect infor-

mation has a backward induction equilibrium.

Proof. Omitted.

7.4 Strategic Form of an Extensive Form Game

The strategic form is given by
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1. The set of playersN,

and for each playeri

2. The set of strategiesSi ,

3. The payoff function,

ui : S→ R

whereS= ×i∈NSi is the set of all strategy profiles.

So, the only difference from the standard definition of a strategic form game is the use of

strategies rather than actions.

As an illustration, let us find the strategic form of the bargaining game. The set of players

is N = {B,S} , the set of strategies areSB = {100,500} andSS = {AA,AR,RA,RR}. The payoff

functions are represented in the following bimatrix

AA AR RA RR

100 500,50 500,50 0,0 0,0

500 100,450 0,0 100,450 0,0

Definition. A strategy profiles∗ ∈ S is a Nash equilibrium if for each playeri

ui
(
s∗i ,s

∗
−i

)
≥ ui

(
si ,s

∗
−i

)
for all si ∈ Si

or equivalently, if for each playeri

s∗i ∈ Bi
(
s∗−i

)
.

Therefore, the above bargaining game has three Nash equilibria (100,AA), (100,AR), and

(500,RA) . Notice that the first two Nash equilibria result in the same outcome as does the back-

ward induction equilibrium, i.e.,(100,A) , whereas the third one results in the outcome(500,A) .

This last equilibrium, however, is sustained by anincredible threat by the seller, i.e., the threat

that she will not accept the offer of $100. This threat is not credible because, if it was tested by

the buyer, i.e., the buyer were to offer $100, then the sellerwould actually find it in her interest to

accept the offer.

Backward induction equilibrium concept eliminates equilibria based upon incredible threats by

demanding players to be rational at every point in the game, aproperty that we callsequential

rationality . Sequential rationality is stronger than just requiring thestrategies to be best responses

to the strategies of the other players, i.e., stronger than the rationality requirement behind the Nash

equilibrium concept. For example, in the bargaining game above, the strategyRAis a best response
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to the offer of $500, but is not sequentially rational, because it specifies the seller to reject the offer

of $100, and this is not rational at the decision node of the seller following the offer of $100.

7.5 Extensive Form Games with Imperfect Information

In the previous section we have analyzed extensive form games with perfect information where

every player had a perfect knowledge of what had happened previously in the game, i.e., each

player observed the previous moves made by the other players. In this section we will relax this

assumption and allow the possibility that some of the previous moves by other players are not

observed when a player is called upon to move. Such games are calledextensive form games with

imperfect information .

In extensive form games with imperfect information, the notion of information sets, which we

have introduced in the last section becomes crucial. Aninformation set of playeri is a collection

of decision nodes of playeri that cannot be distinguished by playeri. Therefore, if the game reaches

to any of the nodes in an information set of a player, that player does not know which of the nodes

in that information node has actually been reached.

As an example consider the bargaining game with imperfect information (see Figure 7.2). In

this game there is one information set of the seller that contains the decision nodes following the

offers 100 and 500. When the seller is called upon to move, shedoes not know which of the

two offers have been made, i.e., which of the two decision nodes in the information set has been

reached. The strategy sets are given bySB = {100,500} andSS = {A,R} and hence we have the

following strategic form of this game

A R

100 500,50 0,0

500 100,450 0,0

The unique Nash equilibrium of this game is therefore(100,A) , the same outcome as the

backward induction equilibrium outcome of the bargaining game with perfect information! The

reason why we have a unique Nash equilibrium outcome in this game is that we have eliminated

the seller’s ability of making a non-credible threat of rejecting the offer of $100.

We may think of extensive form with imperfect information asa generalization of extensive

form with perfect information. In the latter, all the information sets are singletons, i.e., they each

contain a single node, whereas in the former there is at leastone information set that contains more

than one node.

As an another example consider the following entry-game. Suppose Pepsi is currently the sole
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provider in a market, say in Bulgaria. Coke is considering toenter the market. If Coke enters,

both firms simultaneously decide whether to act tough(T) or accommodate(A). This leads to an

extensive form game with imperfect information whose game tree representation is given in Figure

7.11, where the first number in a payoff vector belongs to Cokeand the second to Pepsi.
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Figure 7.11: Entry-game.

In this gameSC = {OT,OA,ET,EA} andSP = {T,A} , and hence we have the following strate-

gic form:
T A

OT 0,5 0,5

OA 0,5 0,5

ET −2,−1 0,−3

EA −3,1 1,2

There are three Nash equilibria of this game:(OT,T) , (OA,T) ,(EA,A) . In the second Nash

equilibrium Coke is supposed to accommodate and Pepsi is supposed to act tough, following Coke

entering the market. Is that reasonable? In other words, suppose, the game actually reached that

stage, that is Coke actually entered. Now, is(A,T) a reasonable outcome? One way of asking the

same question is to check if both players are acting rationally, i.e., best responding to each other’s

strategies, conditional upon Coke entering the market. Notice that conditional upon Coke entering

the market we have the following “game”
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Figure 7.12: Entry-“game”.

which has the following strategic form

Pepsi

T A

Coke T −2,−1 0,−3

A −3,1 1,2

If Coke anticipates Pepsi to playT, then its best response isT as well, notA. (Neither isT a best

response for Pepsi toA.) Therefore, to the extent that we regard only Nash equilibrium outcomes

as reasonable, we conclude that(A,T) is not reasonable. In contrast, the post-entry behavior of

both players are rational in equilibria(OT,T) and(EA,A) .

7.5.1 Subgames and Subgame Perfect Equilibrium

Subgame perfect equilibrium is a generalization of the backward induction equilibrium to ex-

tensive form games with imperfect information. To define subgame perfect equilibrium we have to

first define a subgame.

Definition. A subgameis a part of the game tree such that

1. it starts at a single decision node,

2. it contains every successor to this node,

3. if it contains a node in an information set, then it contains all the nodes in that information

set.
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It is conventional to treat the entire game as a subgame and call all the other subgamesproper

subgames.For example, the entry-game given in figure 7.11 has two subgames: the game itself

and the subgame which starts after Coke enters the market. Ofcourse, only the latter is a proper

subgame.

Given a subgameg, let us denote the restriction of a strategysi to that subgameg by si |g. For

example, if we denote the post-entry subgame in the entry-game bye (this subgame is given in

figure 7.12), thenOT|e = T, EA|e = A, etc.

Definition. A strategy profiles∗ in an extensive form gameΓ is asubgame perfect equilibrium

(SPE) if for every subgameg of Γ, s∗|g is a Nash equilibrium ofg.

Therefore, there are two SPE of the entry-game:(OT,T) and(EA,A) .

We can now obtain a better insight into the difference between subgame perfect equilibrium

(or backward induction equilibrium) and Nash equilibrium by using the language of subgames. We

first have to distinguish between subgames that can be reached by a strategy profile and those that

cannot be reached. A subgame can bereachedunder the strategy profiles∈S if, when the strategy

profile is implemented, the initial node of the subgame will actually be reached. Otherwise, we

say that the subgame cannot be reached under the strategy profile s. A strategy profiles∗ is a Nash

equilibrium if every player plays a best response to the strategies of the other players in every

subgame that can be reached unders∗. In contrast, a strategy profiles∗ is a SPE if every player

plays a best response to the strategies of the other players in every subgame, i.e., even in those

subgames that cannot be reached unders∗. In other words, Nash equilibrium demands rationality

in only those subgames that can be reached in equilibrium, whereas SPE demands rationality in

every subgame, and this latter form of rationality is calledsequential rationality.

As an exercise consider the game in figure 7.3 and find its Nash equilibria and SPE. Verify that

there are Nash equilibria in which one of the players do not behave sequentially rationally, whereas

in all SPE both players act sequentially rationally.
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Chapter 8

Extensive Form Games: Applications

8.1 Bargaining

Bargaining has been one of the most elusive areas in economics. Many great economists have

declared that standard tools of economics cannot predict a unique outcome to bargaining situations

because the outcome is likely to be determined by many non-economic factors, such as psychology,

culture, history, political power, etc. One important solution to the problem has been given by John

F. Nash, Jr., who, in his 1950 paper, took a cooperative approach and showed that there is a unique

solution that satisfies certain “desirable” properties. Cooperative game theory assumes that players

can sign binding contracts, whereas non-cooperative game theory rules out this possibility.

Nash has assumed that two people are bargaining over a set of possible outcomes, denoted by

S⊆ R2
+. If the individuals fail to reach an agreement they both receive outcome zero(0,0) , called

thedisagreement point.Nash looked for solutions that satisfy the following properties:

Axiom 8.1 (Pareto Efficiency (PAR)). No one can improve upon the solution without making the

other person worse off.

Axiom 8.2 (Symmetry (SYM)). Both individuals receive the same outcome if the bargainingset is

symmetric.

Axiom 8.3 (Invariance (INV)). If the bargaining set is contracted or expanded by some factor, the

shares are also contracted or expanded by the same factor.

Axiom 8.4 (Independence of Irrelevant Alternatives (IIA)). Adding alternatives to the bargaining

set that have not been chosen does not change the solution.

99
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Nash has shown that the unique solution that satisfies these properties is given by

(π∗
A,π∗

B) = argmax
π∈S

πAπB.

8.1.1 Ultimatum Bargaining

Two players, A and B, bargain over a cake of size 1. Player A makes an offerxA ∈ [0,1] to

player B. If player B accepts the offer(Y), agreement is reached and player A receivesxA and

player B receives 1− xA. If player B rejects the offer(N), both players receive a payoff of zero.

This can be modelled as an extensive form game with perfect information. However, it is not a

finite game as A has infinitely many actions.

We can use backward induction to find the subgame perfect equilibrium (SPE) of this game.

Consider a subgame that follows A’s offer ofx. If x < 1, then B’s optimal action is to accept the

offer. If, on the other hand,x= 1, then both accepting and rejecting are optimal. First, suppose that

B accepts any offerx∈ [0,1]. In this case, clearly, the optimal offer by A isx∗A = 1. So, one SPE is

(1,s∗2 (x)) where

s∗2(x) = Y for all x∈ [0,1].

Now suppose B accepts only offers that are strictly smaller than one. What is A’s optimal offer in

this case? Could offering 1 be optimal? No, because this willbe rejected by B resulting a payoff

of zero for A. Player A could deviate and offer something smaller than one and obtain a positive

payoff instead.. Could offering something strictly smaller than 1 be optimal? No! To see why,

supposex < 1 is an optimal offer. This will be accepted by B and give player A a payoff of x.

However, player A can deviate and offerx+ ε, with 0 < ε < 1−x and hencex+ ε < 1, which will

be accepted by B and give player A a payoff ofx+ ε which is strictly larger thanx. Therefore, the

unique SPE is(1,s∗2 (x)) where

s∗2 (x) = Y for all x∈ [0,1]

and the unique SPE outcome is(1,Y) .

8.1.2 Alternating Offers Bargaining

Preliminaries

Two players, A and B, bargain over a cake of size 1. At time 0 player A makes an offer

xA ∈ [0,1] to player B. If player B accepts the offer, agreement is reached and player A receivesxA

and player B receives 1− xA. If player B rejects the offer, she makes a counterofferxB ∈ [0,1] at

time 1. If this counteroffer is accepted by player A, then player B receivesxB and player A receives



8.1. Bargaining 101

1−xB. Otherwise, player A makes another offer at time 2. This process continues indefinitely until

a player accepts an offer.

If the players reach an agreement at timet on a partition that gives playeri a sharexi of the

cake, then playeri’s payoff isδt
ixi , whereδi ∈ (0,1) is playeri’s discount factor. If players never

reach an agreement, then each player’s payoff is zero.

Stationary No-delay Equilibrium

We will first characterize the SPE with the following two properties, and then show that all SPE

have these properties.

1. (No Delay)All equilibrium offers are accepted.

2. (Stationarity) A player makes always the same offer in equilibrium.

Let x∗i denote the equilibrium offer by playeri. Given properties 1 and 2, the current present

value of rejecting an offerx∗A is δBx∗B for player B. This implies that in equilibrium

1−x∗A = δBx∗B. (8.1)

Similarly

1−x∗B = δAx∗A. (8.2)

Therefore, there is a unique solution

x∗A =
1−δB

1−δAδB
(8.3)

x∗B =
1−δA

1−δAδB
(8.4)

Thus, there exists at most one SPE satisfying the two properties. But we still have to verify

there exists such an equilibrium. Consider the strategy profile (s∗A,s∗B) defined as

Player A: Always offerx∗A, accept anyxB with 1−xB ≥ δAx∗A
Player B: Always offerx∗B, accept anyxA with 1−xA ≥ δBx∗B.

Before we prove that this strategy profile is a SPE we state thefollowing proposition

Proposition 8.1. (One-Deviation Property). Let Γ be a finite horizon extensive form game with

perfect information. The strategy profile s∗ is a SPE ofΓ if and only if for every player i∈ N and

for every subgame g ofΓ, in which player i moves at the initial node of g there exists no profitable

deviation by player i which differs from s∗
i only in the action specified at the initial node of g.
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Remark8.1. It is possible to show that if the payoffs of aninfinite horizon game satisfies a certain

regularity condition (continuity at infinity: see Fudenberg and Tirole, 1991, p. 110), then the

one-deviation property holds for infinite horizon games as well.]

Proposition 8.2. One-deviation property holds for the Rubinstein bargaining game.

Proposition 8.3. (s∗A,s∗B) is a SPE of the alternating offers bargaining game.

Proof. Consider any period when A has to make an offer. Her payoff tos∗A is x∗A. If A offers

xA < x∗A then

1−xA > δBx∗B

by equation (8.1) and hence B accepts any such offer which gives A a payoff less thanx∗A. If she

offersxA > x∗A, then B rejects and offersx∗B, A accepts giving her a payoff of

δA(1−x∗B) < x∗A

by equation (8.1). Therefore, there is no profitable one-shot deviation in any subgame starting with

her offer.

Now, consider subgames starting with player A responding. If player A rejects offerxB with

1−xB ≥ δAx∗A, then she will offerx∗A herself and getδAx∗A. So this is not a profitable deviation.

By a symmetric argument, it follows that player B’s strategyis optimal in every subgame as

well.�

8.1.3 Unique Subgame Perfect Equilibrium

Theorem 8.1. The strategy profile s∗ is the unique SPE.

Proof. Let Γi denote any subgame that starts with playeri making an offer. Clearly, all such

subgames are strategically equivalent (since preferencesare stationary, i.e., does not depend on

calendar time) and thus all have the same SPE. LetGi denote the set of SPE in any subgameΓi and

let1

Mi = maxGi ,

mi = minGi.

Lemma 8.1. There exists a unique SPE payoff profile ofΓA given by(x∗A,1−x∗A) and a unique SPE

payoff profile ofΓA given by(x∗B,1−x∗B) .

1It is possible that maxGi and minGi do not exist. For example ifGi = (0,1) , max Gi and minGi do not exist.
However, the theorem is still true with max and min replaced with sup (supremum) and inf (infimum).
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Proof of Lemma 5.

Claim 1. mi ≥ 1−δ jM j , i 6= j.

Proof of Claim 1.First note that player B accepts any offerxA such that 1− xA > δBMB. So,

if there exists an equilibrium ofΓA yielding uA < 1− δBMB, player A can profitably deviate from

such an equilibrium by offeringxA such thatuA < xA < 1−δBMB. ‖

Claim 2. Mi ≤ 1−δ jmj , i 6= j.

Proof of Claim 2. Player B rejects any offer which gives her less thanδBmB and following

rejection she never offers more thanδAMA. Therefore,

MA ≤ max







1−δBmB
︸ ︷︷ ︸

max when B accepts

, δ2
AMA
︸ ︷︷ ︸

max when B rejects







and hence

MA ≤ 1−δBmB.

‖

Claims 1 and 2 imply that

mA ≥ 1−δBMB (8.5)

mB ≥ 1−δAMA (8.6)

MA ≤ 1−δBmB (8.7)

MB ≤ 1−δAmA (8.8)

From 8.6 we get

−δBmB ≤−δB(1−δAMA)

and

1−δBmB ≤ 1−δB(1−δAMA)

which together with 8.7 implies that

MA ≤ 1−δB(1−δAMA)

or

MA ≤
1−δB

1−δAδB
. (8.9)
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By 8.8 we have

1−δBMB ≥ 1−δB(1−δAmA)

which together with 8.5 implies that

mA ≥ 1−δB(1−δAmA)

or

mA ≥
1−δB

1−δAδB
. (8.10)

SinceMA ≥ mA, 8.9 and 8.10 imply that

MA = mA =
1−δB

1−δAδB
. (8.11)

Similarly,

MB = mB =
1−δA

1−δAδB
. (8.12)

Therefore, the unique payoff profile inΓA is (x∗A,1−x∗A) and the unique payoff profile inΓB is

(x∗B,1−x∗B).‖

We can now complete the proof of the theorem by using Lemma 5. We first show that all

equilibrium offers are accepted in any SPE. Suppose there exists a SPE in which player A’s offer is

rejected. By Lemma 5, A’s equilibrium payoff in this subgameis x∗A. But by Lemma 5, A’s payoff

in subgame following rejection is(1−x∗B), and hence, the equilibrium payoff of A in the subgame

in which her offer is rejected must beδA (1−x∗B) . But, this implies

x∗A = δA (1−x∗B) = δ2
Ax∗A,

a contradiction. Similarly, player B’s equilibrium offersmust be accepted.

Second, we show that in all SPE A offersx∗A and B offersx∗B. Suppose A offersxA > x∗A in a SPE

of a ΓA. This offer must be rejected by B in equilibrium, because otherwise B would get less than

1− x∗A in that subgame which contradicts Lemma 5. This, in turn, contradicts that no equilibrium

offer is rejected. Now supposexA < x∗A in a SPE of aΓA. This offer, too, must be rejected by B,

because otherwise A would get less thanx∗A in that subgame, contradicting Lemma 5. So, A must

be offeringx∗A in all SPE. Similarly, B must always be offeringx∗B.

Since there is a unique SPE satisfying these properties, as proved in Proposition 3, the proof is

complete.�
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8.1.4 Properties of the Equilibrium

(1) Equilibrium is Unique and Efficient

This is the case forδi < 1. That is, there has to be some friction. Otherwise there exists a

continuum of equilibria, including inefficient ones.

(2) Bargaining Power

Note that the share of player A in the unique SPE is

πA = x∗A =
1−δB

1−δAδB

and that of B is

πB = 1−x∗A =
δB (1−δA)

1−δAδB

and hence the share of playeri is increasing inδi and decreasing inδ j . The bargaining power comes

from patience. The more patient a player is, the higher her share.

If the payers are equally patient, i.e.,δA = δB = δ, then

πA =
1

1+ δ
>

δ
1+ δ

= πB

In other words, there is a first mover advantage.

The first mover advantage disappears asδ → 1.

lim
δ→1

πA =
1
2

lim
δ→1

πB =
1
2
.

(3) Relationship with Nash Bargaining Solution

Let

S=
{
(πA,πB) ∈ R2

+ : πA + πB ≤ 1
}

.

Then, asδ → 1, the SPE of the Rubinstein game converges to the Nash bargaining solution, i.e.,

(π∗
A,π∗

B) = argmax
π∈S

πAπB.
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Chapter 9

Repeated Games

9.1 Motivation

Many interactions in the real world have an ongoing structure and in many such situations

people consider their long-term payoffs in addition to the short-term gains. This might lead people

to behave in ways different from how they would if the interactions were one-shot rather than

long-term. Consider the following prisoners’ dilemma game.

C D

C 2,2 0,3

D 3,0 1,1

.

Remember that in this game defecting(D) for both players is the unique Nash equilibrium (and

also the strictly dominant strategy equilibrium). So, if this game is played only once, game theory

strongly suggests that the outcome will be(D,D) , which is suboptimal, since the cooperative out-

come(C,C) gives both players a strictly higher payoff. However, if this game is played repeatedly

between two players, then they may be inclined to cooperate,rather than defect, if they think they

will be punished in the future for defecting.

Theory of repeated games analyzes the types of outcomes, behavior, and norms that can be sup-

ported as Nash equilibrium or and subgame perfect equilibrium outcomes in repeated interactions.

Rather than presenting this large body of literature, we will present some examples and indicate

how they generalize to other repeated interactions.
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9.2 Preliminaries

Let G= (N,(Ai) ,(ui)) be ann-player finite strategic form game. We will call G thestage game.

For example,G might be the prisoners’ dilemma (PD) game given above.

An infinitely repeated gameis defined by the following elements. The stage game is played

at each discrete time periodt = 1,2, . . . , and at the end of each period the action choice of each

player is revealed to everybody. Ahistory in time periodt is simply a sequence of action profiles

from period 1 through periodt −1, i.e.,

ht =
(
a0,a1,a2, . . . ,at−1) , for t = 1,2, . . .

where we takea0 to be the empty history (i.e., nothing has happened so far). For example, in the

PD game a possible fifth period history is
(
a0,(C,C) ,(C,C) ,(D,C) ,(D,D)

)
. We will usually omit

the empty history in this specification as a convention, and write ((C,C) ,(C,C) ,(D,C) ,(D,D)).

The set of periodt histories is then given by

Ht = At−1, for t = 1,2, . . .

where we again setA0 = a0. The set of all second period histories in PD game is

H2 = A

= {(C,C) ,(C,D) ,(D,C) ,(D,D)}

and the set of all period three histories is

H3 = A2 = A×A

= {(C,C) ,(C,D) ,(D,C) ,(D,D)}×{(C,C) ,(C,D) ,(D,C) ,(D,D)}

etc.. A history is terminal if and only if it is infinite. In other words a terminal history is in the form

of
(
a0,a1,a2, . . .

)
. Notice that each nonterminal history starts a subgame in therepeated game.

After any nonterminal history each playeri ∈ N simultaneously chooses an action inAi. There-

fore, apure strategy si of player i is a sequence of functions that assign an action inAi to every

history ht ; si (ht) denotes the action choice of playeri after historyht . Therefore, a strategy for

playeri is given by

si =
(
si
(
a0) ,si

(
a0,a1) , . . . ,si

(
a0,a1, . . . ,at−1) , . . .

)
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For example, in the PD game a strategy may specify

si
(
a0)= C and

si
(
a0,a1, . . . ,at−1)=

{

C, if aτ
j = C, j 6= i, for τ = 1,2, . . . , t −1

D, otherwise
.

This strategy instructs playeri to start with playingC and continuing doing so unless the opponent

has playedD in the past, in which case, playeri plays D forever. (This strategy is also called

grim-trigger strategy, because defection is triggered by the opponent’sdefection and grim because

punishment is unrelenting). We denote the set of all pure strategies for playeri by Si . The set of

all strategy profiles are denotedS. A strategy profiles= (s1, . . . ,sn) induces a terminal history in

the obvious manner. For example, if both players adopt the grim-trigger strategy defined above the

outcome will be cooperation every period.

The last thing that we have to define ispayoff functions. Since, only histories are the infinite

histories and each period’s payoff is the payoff from the stage game, we have to describe how

players evaluate infinite streams of payoffs
(
ui
(
a1
)
,ui
(
a2
)
, . . .
)
. Although there are alternative

specifications in the literature, we will concentrate on thecase of discounting, where players dis-

count the period payoffs using a discount factorδ ∈ (0,1) . The payoff of playeri to the infinite

sequence
(
a1,a2, . . .

)
is given by

(1−δ)
∞

∑
t=1

δt−1ui
(
at) .

The normalization factor(1−δ) serves to measure the stage game and the repeated game payoffs

in the same units. For example, the payoff to perpetual cooperation is given by

(1−δ)
∞

∑
t=1

δt−1×2 = 2.

The payoff of playeri induced by strategy profiles is given by

U (s) = (1−δ)
∞

∑
t=1

δt−1ui
(
at)

whereat is the periodt action profile if players comply with the strategy profiles. For example, if

both players play according to the grim-trigger strategy profile, then periodt action profile will be
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at = (C,C) for all t = 1,2, . . . , and hence

U (s) = (1−δ)
∞

∑
t=1

δt−1ui (C,C)

= (1−δ)
∞

∑
t=1

δt−1×2

= 2.

if s is the grim-trigger strategy profile. Notice that each history starts a new subgame, and hence

for any strategy profilesand historyht , we can compute the players’ expected payoffs from period

t onward. We call these thecontinuation payoffs and renormalize so that the continuation payoffs

from periodt on are measured in periodt units:

Ui
(
s|ht)= (1−δ)

∞

∑
τ=t

δτ−tui
(
aτ+1)

if the strategy profiles induces the sequence of actions
(
at+1,at+2, . . .

)
starting from historyht .

Let us denote the resulting infinitely repeated game byGδ.

9.3 Equilibria of Infinitely Repeated Games

Definition. The strategy profiles is aNash equilibrium of the repeated gameGδ if for all i ∈ N

Ui (si ,s−i) ≥Ui
(
s′i ,s−i

)
for all s′i ∈ Si .

Let us consider some of the Nash equilibria of the PD game. First of all, payingD after history

is clearly a Nash equilibrium. This is because whatever you do, your opponent will playD, and the

best response toD is D as well. Secondly, let us check if the grim-trigger strategyprofile is a Nash

equilibrium.

Suppose player 2 adopts the grim-trigger strategy. If player 1 also follows the grim-trigger

strategy then the outcome will be cooperation every period

(C,C) ,(C,C) , . . . ,(C,C) ,(C,C) , . . .

with the resulting payoff sequence

2,2,2, . . . ,2,2,2, . . .
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whose average discounted value is

(1−δ)
∞

∑
t=1

δt−1ui (C,C) = (1−δ)
∞

∑
t=1

δt−1×2 = 2.

Now, consider the best possible deviation for player 1. For such a deviation to be profitable it

must result in a sequence of action profiles which has defection by some players in some period.

This, in turn, implies that player 1 must be defecting at someperiod (since player 2 is following

grim-trigger she will not defect unless player 1 defected inthe past). LetT +1, T = 0,1, . . . , be the

first period in which player 1 defects. Therefore, we have thefollowing sequence of action profiles

until periodT +1

(C,C) ,(C,C) , . . . ,(C,C)
︸ ︷︷ ︸

T times

, (D,C)
︸ ︷︷ ︸

periodT+1

.

Since player 2 is following the grim-trigger strategy she will play D in periodT +2 and after. Well,

the best thing that player 1 can do in that case is to playD starting from periodT + 2 as well.

Therefore, the best deviation by player 1 generates the following sequence of action profiles

(C,C) ,(C,C) , . . . ,(C,C)
︸ ︷︷ ︸

T times

, (D,C)
︸ ︷︷ ︸

periodT+1

,(D,D) ,(D,D) , . . .

and the following sequence of period payoffs

2,2, . . . ,2
︸ ︷︷ ︸

T times

, 3
︸︷︷︸

T+1

,1,1, . . .

The average discounted value of this sequence is

(1−δ)
[
2+ δ2+ δ22+ . . .+ δT−12+ δT3+ δT+1 + δT+2 + . . .

]

= 2+ δT −2δT+1.

You can check to see that ifδ ≥ 1/2, this is smaller than or equal to 2. Therefore, if players are

patient enough, i.e., ifδ ≥ 1/2, then grim-trigger strategy profile is a Nash equilibrium of infinitely

repeated PD game.

Definition. The strategy profileσ is asubgame perfect equilibriumof the repeated gameGδ if

for all i ∈ N and allht ∈ H

Ui
(
si ,s−i |h

t)≥Ui
(
s′i ,s−i |h

t) for all s′i ∈ Si .
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Proposition 9.1 (One-Shot Deviation Property). A strategy profile s∗ is a SPE of Gδ if and only

if no player can gain by changing her action after any history, keeping both the strategies of the

other players and the remainder of her own strategy constant.

Now, we have the one-deviation property at hand we may analyze the SPE of the repeated

prisoners’ dilemma game. Let us first consider a finitely repeated version. By backward induction

it is easy to see that the only SPE in this case is defection (D) every period. This is because,D is

strictly dominant in the last periodT and hence both players playD after any historyhT . Now, in

periodT −1 neither player can gain in periodT by cooperating, and they loose in periodT −1, so

that play inT −1 will be defection as well after any historyhT−1. Continuing in this manner we

have that both players will playD after every historyht , t = 1,2, . . . ,T, in the unique SPE. [It turns

out that this also the unique Nash equilibriumoutcome. Prove this as anexercise].

Let us now consider the infinitely repeated version. One SPE is given by

si
(
ht)= D, for all t = 1,2, . . .

for i = 1,2. This clearly is subgame perfect (check using the one-shot deviation property).

Now, let us consider the grim-trigger strategy. We have to check whether the grim trigger

strategy satisfies the one-shot deviation property after every possible history. Consider the history

h2 = (C,D) , i.e., in the first period player 2 defected. Let’s see if player 2 has a profitable one-shot

deviation. If player 2 plays according to the grim-trigger strategy, given that player 1 sticks to that

strategy as well, the following sequence of action profiles will result (starting from period 2)

(D,C) ,(D,D) ,(D,D) , . . .

with the sequence of payoffs

0,1,1, . . .

whose average discounted value isδ. If she deviates and playsD in the second period (after history

(C,D)), keeping rest of her strategy the same, she will get a payoff of1 every period, which has

an average discounted value of 1. Therefore, this is a profitable deviation sinceδ < 1, and the

grim-trigger strategy profile is not a subgame perfect equilibrium.

We may, however, modify the grim-trigger strategy slightlyand obtain a SPE. This strategy

profile, which we will call grim-trigger II, is given by

s∗i
(
ht)=







C, t = 1

C, ht = ((C,C) ,(C,C) , . . . ,(C,C))

D, otherwise
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for i = 1,2. The difference in this strategy is that, a player defects if there is a defection in the past

independent of the identity of the defector. We claim thats∗ is a SPE for allδ ≥ 1/2.

Proof. Consider all histories of the typeht = ((C,C) ,(C,C) , . . . ,(C,C)) , i.e., all histories

without any defection. For player 1, the conditional payoff to playings∗1 is

U1
(
s∗|ht)= (1−δ)

∞

∑
τ=t

δτ−t ×2 = 2.

One-shot deviation toD at periodt gives

(1−δ)
[
u1 (D,C)+ δ+ δ2+ . . .

]
= (1−δ)3+ δ

= 3−2δ

≤ 2

for all δ ≥ 1/2. Similarly, letht be a history other than((C,C) ,(C,C) , . . . ,(C,C)) . Then,

U1
(
s∗|ht)= (1−δ)

∞

∑
τ=t

δτ−t ×1= 1

whereas deviating and playingC in periodt gives

(1−δ)
[
u1 (C,D)+ δ+ δ2+ . . .

]
= (1−δ)× (0)+ δ×1

= δ

< 1.

Similar considerations for player 2 shows thats∗ is a SPE.‖

The grim-trigger strategies are very fierce in their punishments, they never forgive. We will

now demonstrate that more forgiving strategies can sustainthe cooperative outcome in a SPE as

well. In this forgiving trigger strategy players start withC and they playC as long as everybody

has playedC in this past. If anybody playsD at any period, then both players playD for k periods.

After k periods of punishment both players return to playingC until someone deviates again.

Suppose the game is in the cooperative phase, i.e., either nobody has deviated so far or the

deviations that have occurred have already been punished. We have to check whether there exists

one-shot profitable deviation in this phase. Suppose player2 follows the forgiving trigger strategy.

If player 1 follows that strategy as well the outcome will be(C,C) forever after with an average

discounted payoff of 2. If player 1 deviates toD once and then follows the strategy, then the
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following sequence of actions will result

(D,C) ,(D,D) ,(D,D) , . . . ,(D,D)
︸ ︷︷ ︸

ktimes

,(C,C) ,(C,C) , . . .

with the following average discounted payoff

(1−δ)
[

3+ δ+ δ2+ . . .+ δk +2δk+1 +2δk+2 + . . .
]

= 3−2δ+ δk+1.

Therefore, there is no profitable one-shot deviation in the cooperative phase if and only if

3−2δ+ δk+1 ≤ 2

or

δk+1−2δ+1≤ 0.

If, for example,k = 1, then this condition is equivalent to

δ2−2δ+1= (δ−1)2 ≤ 0

which can never hold sinceδ < 1. If, however, k = 2, then the condition will be satisfied for

any δ ≥ 0.62. In general, as the length of the punishment phase increases,the lower bound onδ
decreases and converges to 1/2 ask→ ∞.

We also have to check if there is a profitable one-shot deviation in the punishment phase.

Suppose there arek′ ≤ k periods left in the punishment phase. If player 1 complies with the

forgiving trigger strategy the following action profiles will be realized

(D,D) ,(D,D) , . . . ,(D,D)
︸ ︷︷ ︸

k′ times

,(C,C) ,(C,C) , . . .

and if she deviates once at the beginning

(C,D) ,(D,D) , . . . ,(D,D)
︸ ︷︷ ︸

k′ times

,(C,C) ,(C,C) , . . .

Clearly, following the forgiving trigger strategy is better in the punishment phase.

So far we have analyzed only the PD game to illustrate some of the results that can be obtained

in repeated games. The repeated games literature considersall possible games and characterizes

the set of possible outcomes that can be obtained in the Nash equilibria or SPE of repeated games.
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Results, known as “folk theorems”, have shown that virtually any outcome can be supported as a

Nash and SPE outcome in infinitely repeated games, provided that the players are patient enough.

Let us consider another example, this time from industrial-organization theory. Consider a

Cournot duopoly model with inverse demand function

P(Q) =

{

a−Q, Q≤ a

0, Q > a

whereQ = Q1+Q2 and cost functionsCi (Qi) = cQi , i = 1,2. The profit function of firmi is given

by

ui (Q1,Q2) = Qi (P(Q1+Q2)−c) .

Consider the following grim-trigger strategy. Produce half the monopoly output in the first period

and as long as everybody has produced that amount so far. Otherwise produce the Cournot output.

As an exercise verify that this is a SPE.
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Chapter 10

Auctions

Many economic transactions are conducted through auctions. Governments sell treasury bills,

foreign exchange, publicly owned companies, mineral rights, and more recently airwave spectrum

rights via auctions. Art work, antiques, cars, and houses are also sold by auctions. Government

contracts are awarded by procurement auctions, which are also used by firms to buy inputs or to

subcontract work. Takeover battles are effectively auctions as well and auction theory has been

applied to areas as diverse as queues, wars of attrition, andlobbying contests.1

There are four commonly used and studied forms of auctions:

1. ascending-bid auction(also called the open, oral, or, English auction): the priceis raised

until only one bidder remains, and that bidder wins the object at the final price.

2. descending-bid auction(also called Dutch auction): the auctioneer starts at a veryhigh price

and lowers it continuously until someone accepts the currently announced price. That bidder

wins the object at that price.

3. first-price sealed bid auction: each bidder submits her bid in a sealed envelope without seeing

others’ bids, and the object is sold to the highest bidder at her bid.

4. second-price sealed bid auction(also known as Vickrey auction2). Bidders submit their bids

in a sealed envelope, the highest bidder wins but pays the second highest bid.

Auctions also differ with respect to the valuation of the bidders. In aprivate value auction

each bidder’s valuation is known only by the bidder, as it could be the case, for example, in an

1For a good introductory survey to the auction theory see PaulKlemperer (1999), “Auction Theory: A Guide to the
Literature,”Journal of Economic Surveys, 13(3), July 1999, pp. 227-286.

2Named after William Vickrey of Columbia University who was awarded the Nobel Prize in economics in 1996.
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artwork or antique auction. In acommon value auction, the actual value of the object is the same

for everyone, but bidders have different private information regarding that value. For example, the

value of an oil tract or a company maybe the same for everybodybut different bidders may have

different estimates of that value.

We will analyze sealed bid auctions, not only because they are simpler to analyze but also

because in the private values case, the first-price sealed bid auction is strategically equivalent to de-

scending bid auction and the second-price sealed bid auction is strategically equivalent to ascending

bid auction.

Figure 10.1: Auction Types

!

!

OPEN-CRY SEALED-BID

English Auction

Dutch Auction

Second Price

First Price

10.1 Independent Private Values

Previously, we have looked at two forms of auctions, namely First Price and Second Price

Auctions, in a complete information framework in which eachbidder knew the valuations of every

other bidder. In this section we relax the complete information assumption and revisit these two

form of auctions. In particular, we will assume that each bidder knows only her own valuation,

and the valuations are independently distributed random variables whose distributions are common

knowledge.

The following elements define the general form of an auction that we will analyze:

• Set of bidders,N = {1,2, . . . ,n} ,

and for eachi ∈ N
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• a type set (set of possible valuations),Θi = [v, v̄] , v≥ 0.

• an action set,Ai = R+ (actions are bids)

• a belief function: playeri believes that her opponents’ valuations are independent draws

from a distribution functionF that is strictly increasing and continuous on[v, v̄] .

• a payoff function, which is defined for anya∈ A, v∈ Θ as follows

ui (a,v) =

{
vi−P(a)

m , if a j ≤ ai for all j 6= i, and
∣
∣
{

j : a j = ai
}∣
∣= m

0, if a j > ai for some j 6= i

whereP(a) is the price paid by the winner if the bid profile isa. Notice that in the case of a

tie the object is divided equally among all winners.

10.1.1 Second Price Auctions

In this design, highest bidder wins and pays a price equal to the second highest bid. Although

there are many Bayesian equilibria of second price auctions, bidding own valuationvi is weakly

dominant for each playeri. To see this letx be the highest of the other bids and consider bidding

a′i < vi , vi , anda′′i > vi . Depending upon the value ofx, the following table gives the payoffs to

each of these actions byi

x≤ a′i a′i < x < vi x = vi vi < x≤ a′′i a′′i < x

a′i win/tie;payx lose lose lose lose

vi win; payx win; payx tie; payvi lose lose

a′′i win; payx win; payx win; payvi win/tie;payx lose

.

By bidding smaller thanvi , you sometimes lose when you should win (ai < x < vi) and by

bidding more thanvi , you sometimes win when you should lose (ai > x > vi).

10.1.2 First Price Auctions

In first price auctions, the highest bidder wins and pays her bid. Let us denote the bid of player

with type vi by βi (vi) and look for symmetric equilibria, i.e.βi (v) = β(v) for all i ∈ N. First,

although we will not attempt to do so here, it is possible to show that strategiesβi (vi) , and hence

β(v) , are strictly increasing and continuous on[v, v̄] .(seeFudenberg and Tirole, 1991). So, let’s

assume that they are, and check if they are once we locate a possible equilibrium.
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The expected payoff of player with typev who bidsb when all the others are bidding according

to β is given by

(v−b) prob(highest bid isb) = (v−b)(prob(β(v) ≤ b))n−1

= (v−b)F
(
β−1(b)

)n−1
.

(Becausevi are independently distributed). The first order condition for maximizing the expected

payoff is

−F
(
β−1(b)

)n−1
+(v−b)(n−1)F

(
β−1(b)

)n−2
F ′
(
β−1(b)

) 1
β′ (β−1(b))

= 0.

by the fact thatβ is almost everywhere differentiable (since it is strictly increasing), and by the

inverse function theorem. Forβ(v) to be an equilibrium first order condition must hold when we

substituteβ(v) for b,

−F (v)n−1 +(v−β(v)) (n−1)F (v)n−2F ′ (v)
1

β′ (v)
= 0,

or

β′ (v)F (v)n−1 +(n−1)β(v)F ′ (v)F (v)n−2 = (n−1)vF′ (v)F (v)n−2

which is a differential equation inβ. Integrating both sides, we get

β(v)F (v)n−1 =

∫ v

v
(n−1)xF (x)n−2 F ′ (x)dx

= vF (v)n−1−

∫ v

v
F (x)n−1dx.

Solving forβ(v) ,

β(v) = v−

∫ v
v F (x)n−1dx

F (v)n−1 .

One can easily show thatβ is continuous and strictly increasing inv as we hypothesized. Fur-

thermore, notice thatβ(v) = v, but β(v) < v for v > v. That is, except the player with the lowest

valuation, everybody bids less than her valuation. As an exercise, let’s calculateβ assumingF is

uniform on[0,1], i.e.,F (x) = x.

β(v) = v−

∫ v
0 xn−1dx

vn−1 = v−
1

vn−1

vn

n
=

n−1
n

v.
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Uniform example solved explicitly: Let’s look for a symmetric equilibrium of the form

β(v) = av. The expected payoff of player with typev who bidsb when all the others are bidding

according toβ is given by

(v−b) prob(highest bid isb) = (v−b)(prob(av≤ b))n−1

= (v−b)(b/a)n−1 .

The first order condition for maximizing the expected payoffis

(v−b)(n−1) = b,

which is solved at

b =
n−1

n
v.

10.1.3 All-Pay Auctions

Consider an auction in which the highest bidder wins the auction but every bidder pays his/her

bid. This model could model bribes, political contests, Olympic competition, war-of-attritions, etc.

Again, let’s look for a symmetric equilibrium,βi (v) = β(v) for all i ∈ N.The expected payoff of

player with typev who bidsb when all the others are bidding according toβ is given by

v× prob(highest bid isb)−b= v× prob(β(v) ≤ b)n−1−b

= vF
(
β−1(b)

)n−1
−b.

Let F beuniform over[0,1]. Then, this becomes

v
(
β−1(b)

)n−1
−b.

The first order condition for maximizing the expected payoffis

−1+v(n−1)
(
β−1(b)

)n−2 1
β′ (β−1(b))

= 0.

For β(v) to be an equilibrium first order condition must hold when we substituteβ(v) for b,

−1+v(n−1)vn−2 1
β′ (v)

= 0,
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or

β′ (v) = (n−1)vn−1

which is a differential equation inβ. Integrating both sides, we get

β(v) =

∫ v

0
(n−1)xn−1dx

=
(n−1)

n
vn.

Notice that asn increases the equilibrium bid decreases.

10.2 Revenue Equivalence

In second price auctions each bidder bids her value and pays the second highest. Therefore,

the expected revenue of the seller is the expected second highest value. In a first price auction, the

highest bidder is the one with the highest value and bids a function of her value, which isn−1
n vmax

in our example above. Therefore, the seller’s expected revenue in a first price and a second price

auction depends on the expectation of the highest and the second highest value, respectively. Given

that there aren bidders who each has a value (drawn independently from a common distribution),

what are the expected values of the highest and second highest values? Order statistics provide the

answer.

Order Statistics

Suppose thatv is a real-valued random variable with distribution function F and density func-

tion f . Also suppose thatn independent values are drawn from the same distribution to form a

random sample(v1,v2, . . . ,vn) . Let v(k) denote thekth smallest of(v1,v2, . . . ,vn) and call itkth

order statistic. In particularv(n) is the highest andv(n−1) is the second highest order statistics. Let

Fk denote the distribution function ofv(k). Let’s start with the distribution function ofv(n).

Fn(x) = prob
(
v(n) ≤ x

)
= prob(all vi ≤ x)

= [F (x)]n.

Similarly,

Fn−1(x) = prob
(
v(n−1) ≤ x

)

= prob(eithern or (n−1) of v’s are ≤ x)

= [F (x)]n +n(1−F (x)) [F (x)]n−1
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In general,

Fk (x) = prob(vk ≤ x)

= prob((number ofv’s that are≤ x) ≥ k)

=
n

∑
j=k

n!
j! (n− j)!

F (x) j (1−F (x))n− j

Hence, ifF is uniform on[0,1], i.e.,F (x) = x, we have

Fn(x) = xn, Fn−1(x) = xn +n(1−x)xn−1

fn (x) = nxn−1, fn−1(x) = (n−1)n(1−x)xn−2.

Therefore,

E[v(n)] =
∫ 1

0
xnxn−1dx

=
n

n+1

and

E[v(n−1)] =
∫ 1

0
x(n−1)n(1−x)xn−2dx

=
n−1
n+1

.

Now, in a second price auction the expected revenue is the expected second highest value

E[R2] = E[v(n−1)] =
n−1
n+1

,

and the revenue in the first price auction is the expected bid of the bidder with the highest value,

i.e.,

E[R1] =
n−1

n
E[v(n)]

=
n−1

n
n

n+1

=
n−1
n+1

.

Therefore, both auction forms generate the same expected revenues. This is an illustration of
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therevenue equivalence theorem:

Theorem Any auction with independent private values with a common distribution in which

1. the number of the bidders are the same and the bidders are risk-neutral,

2. the object always goes to the buyer with the highest value,

3. the bidder with the lowest value expects zero surplus,

yields the same expected revenue.

Therefore, all four types of the auctions yield the same expected revenue for the seller in the

case of independent private values and risk neutrality. This theorem also allows us to calculate

bidding strategies of other auctions. An all-pay auction, for example, satisfies the conditions of the

theorem and hence must yield the same expected revenue.

10.3 Common Values and The Winner’s Curse

In a common value auction, bidders have all the same value buteach bidder only observes a

private signal about the value. Therefore, if a bidder wins the auction, i.e., is the highest bidder, it

is likely that the other bidders received worse signals thanthe winner. In other words, the value of

the object conditional on winning is smaller than the unconditional expected value. If this is not

taken into account, then the winner might bid an amount more than the actual value of the object,

a situation known as thewinner’s curse.

As an example supposev = t1 + t2, wherev is the common value but bidderi observes only

the signalti . Assume that eachti is distributed independently and has a uniform distribution over

[0,1]. This, for example, be a takeover battle where the value of thetarget company is the same but

each bidder obtains an independent signal about the value. Suppose that the auction is a first-price

sealed bid auction. Denote the strategies bybi (ti) and look for an equilibrium in whichbi (ti) = ati .

The expected payoff of player 1 given that player 2 bids according tob2 (t2) = at2 is given by

U1 (b1, t1) = E[v−b1 | b1 > b2]prob(b1 > b2)

= E[t1+ t2−b1 | b1 > at2]prob(b1 > at2)

= E[t1+ t2−b1 | t2 < b1/a]prob(t2 < b1/a)

= (t1 +E[t2 | t2 < b1/a]−b1)
b1

a

=

(

t1 +
b1

2a
−b1

)
b1

a
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First order condition is

∂U1(b1, t1)
∂b1

=

(

t1 +
b1

2a
−b1

)
1
a

+
b1

a

(
1
2a

−1

)

= 0,

which implies that

2

(

1−
1
2a

)

b1 = t1.

For b1 = at1 to be optimal we must have

2

(

1−
1
2a

)

at1 = t1,

which implies thata = 1. Therefore,bi (ti) = ti is a Nash equilibrium.

As a comparison consider the independent private values case wherevi = ti +0.5. Note that this

is the expected value in the above model conditional upon observing ti (but not conditional upon

winning). Let’s look for an equilibrium of the formbi (ti) = ati +c. The expected payoff of player

1 to biddingb1 given that player 2 is using the strategyat2 +c is

U1(b1, t1) = E[v−b1]prob(b1 > b2)

= E[t1+0.5−b1]prob(b1 > at2 +c)

= (t1 +0.5−b1) prob

(

t2 <
b1−c

a

)

= (t1 +0.5−b1)
b1−c

a

if a≤ b1 ≤ a+c. Assume that this holds. Then, the first order condition is

∂U1(b1, t1)
∂b1

= −
b1−c

a
+(t1 +0.5−b1)

1
a

= 0

which is solved at

b1 =
1
2

c+
1
2

t1 +0.25.

For b1 (t1) = at1 +c to be optimal, we must have

1
2

c+
1
2

t1 +0.25= at1 +c,
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which implies thata = 0.5, c = 0.5. Therefore,

b1 (t1) =
t1
2

+
1
2
,

b2 (t2) =
t2
2

+
1
2

constitutes a Bayesian Nash equilibrium (indeed the uniqueequilibrium) of this auction. (Notice

that this satisfies that above restrictiona≤ b1 ≤ a+c for all t1.) Also note that

t1
2

+
1
2
≥ t1

for all t1 ∈ [0,1], hence there is always underbidding in common value auctions. The reason is that

the expected value of the object is smaller conditional uponwinning in common value auctions,

whereas this value does not depend on the event of winning or not winning.

10.4 Auction Design

The auctioneer may have different objectives in designing an auction. The government which

is privatizing a company, for example, might want to generate the highest revenue from the auc-

tion, or might want to make sure that it is efficient, i.e., that the company goes to the bidder with

the highest valuation for it, or to a bidder with some other characteristics. Auction theory helps

in designing auctions by comparing different auction formats in terms of their equilibrium out-

comes. For example, if the objective is to generate the highest revenue, then different auction

formats may be compared on the basis of the expected equilibrium revenues to find the best one.

In the case of private, independent values with the same number of risk neutral bidders, revenue

equivalence theorem says that the format does not matter, aslong as the reserve price is set right.

Therefore, the cases where the values are correlated (as in the case of common value auctions), or

the bidders are risk averse, auction design becomes a challenging matter. In practice, collusion and

entry-deterrence also becomes relevant design problems. Collusion is relevant because revenue

equivalence does not hold if there is collusion. Also, remember that the expected revenue from an

auction increases in the number of bidders even when the revenue equivalence holds, and hence the

auctioneer has an incentive to prevent entry-deterrence.

10.4.1 Need for a Reserve Price

If there is only one bidder who comes to the auction, the seller will not make any money, unless

she sets a reserve price. What is the optimal reserve price? This is similar to the case where the
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seller is a monopoly and tries to find the optimal price. Assuming that the costs are sunk and

therefore the total payoff of the seller is given by the totalrevenue, the expected payoff is given by

E[R(p)] = prob(sale occurs at pricep)× p

= prob(p < v)× p

= (1−F (p)) p.

This is maximized when

− f (p) p+(1−F (p)) = 0

or

p =
1−F (p)

f (p)
.

So, if F is uniform over [0,1],

p =
1− p

1

which implies thatp = 1/2. So, an optimal auction must set a reserve price of 0.5 in this particular

case.

10.4.2 Common Values

We have seen above that first-price sealed bid auction leads to lower bids in the case of common

value auctions. In general, if the signals received by the bidders are positively correlated, ascending

auction raises more expected revenue than the second-pricesealed bid auction, which in turn beats

the first-price auction.

10.4.3 Risk-Averse Bidders

In a second price auction risk aversion does not matter, i.e., the bidders always bid their values.

In a first-price auction however, an increase in risk aversion leads to higher bids since it increases

the probability of winning at the cost of reducing the value of winning. Therefore, a risk-neutral

seller faced with risk-averse bidders prefers the first-price or (descending) Dutch auction to second-

price or (ascending) English auctions.

10.4.4 Practical Concerns

3

3This part is based on Paul Klemperer, ”What Really Matters inAuction Design,”Journal of Economic Perspectives
2002, 16(1), 169-189.
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Collusion

A major concern in practical auction design is the possibility that the bidders explicitly or tacitly

collude to avoid higher prices. As an example consider a multi-unit (simultaneous) ascending

auction. In such an auction, bidders can use the early stageswhen prices are still low to signal who

should win which objects, and then tacitly agree to stop pushing prices up.

• 1999 Germany spectrum auction: any new bid must exceed the previous one by at least 10

percent. Mannesman bid 18.18 mil. on blocks 1-5 and 20 mil. onblocks 1-6 (18.18×1.1≃20).

This was like an offer to T-Mobil (the only other credible bidder) to bid 20 mil. on blocks

1-5 and not bid on blocks 6-10. This is exactly what happened.

• 1996-97 U.S. spectrum auction: U.S. West was competing vigorously with McLeod for lot

number 378 - a licence in Rochester, Minnesota. U.S. West bid$313,378 and $62,378 for

two licences in Iowa in which it had earlier shown no interest, overbidding McLeod who

had seemed to be the uncontested high-bidder for these licenses. McLeod got the point that

it was being punished for competing in Rochester, and dropped out of that market. Since

McLeod made subsequent higher bids on the Iowa licenses, the“punishment” bids cost U.S.

West nothing

• A related phenomenon can arise in one special kind of sealed-bid auction, namely a uniform-

price auction in which each bidder submits a sealed bid stating what price it would pay for

different quantities of a homogenous good, e.g., electricity (that is, it submits a demand

function), and then the good is sold at the single price determined by the lowest winning

bid. In this format, bidders can submit bids that ensure thatany deviation from a (tacit or

explicit) collusive agreement is severely punished: each bidder bids very high prices for

smaller quantities than its collusively agreed share. Thenif any bidder attempts to obtain

more than its agreed share (leaving other firms with less thantheir agreed shares), all bidders

will have to pay these very high prices. However, if everyonesticks to their agreed shares

then these very high prices will never need to be paid. So deviation from the collusive

agreement is unprofitable. The electricity regulator in theUnited Kingdom believes the

market in which distribution companies purchase electricity from generating companies has

fallen prey to exactly this kind of “implicit collusion.”

Much of the kind of behavior discussed so far is hard to challenge legally. Indeed, trying to

outlaw it all would require cumbersome rules that restrict bidders’ flexibility and might generate

inefficiencies, without being fully effective. It would be much better to solve these problems with

better auction designs.
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Entry Deterrence

The second major area of concern of practical auction designis to attract bidders, since an

auction with too few bidders risks being unprofitable for theauctioneer and potentially inefficient.

Ascending auctions are often particularly poor in this respect, since they can allow some bidders

to deter the entry, or depress the bidding, of rivals. In an ascending auction, there is a strong

presumption that the firm which values winning the most will be the eventual winner, because even

if it is outbid at an early stage, it can eventually top any opposition. As a result, other firms have

little incentive to enter the bidding, and may not do so if they have even modest costs of bidding.

• Glaxo’s 1995 takeover of the Wellcome drugs company. AfterGlaxo’s first bid of 9 billion

pounds, Zeneca expressed willingness to offer about 10 billion pounds if it could be sure

of winning, while Roche considered an offer of 11 billion pounds. But certain synergies

made Wellcome worth a little more to Glaxo than to the other firms, and the costs of bidding

were tens of millions of pounds. Eventually, neither Roche nor Zeneca actually entered the

bidding, and Wellcome was sold at the original bid of 9 billion pounds, literally a billion or

two less than its shareholders might have received. Wellcome’s own chief executive admitted

“...there was money left on the table”.

Solutions

Much of our discussion has emphasized the vulnerability of ascending auctions to collusion

and predatory behavior. However, ascending auctions have several virtues, as well.

• An ascending auction is particularly likely to allocate the prizes to the bidders who value

them the most, since a bidder with a higher value always has the opportunity to rebid to top

a lower-value bidder who may initially have bid more aggressively.

• If there are complementarities between the objects for sale, a multi-unit ascending auction

makes it more likely that bidders will win efficient bundles than in a pure sealed-bid auction

in which they can learn nothing about their opponents’ intentions.

• Allowing bidders to learn about others’ valuations duringthe auction can also make the

bidders more comfortable with their own assessments and less cautious, and often raises the

auctioneer’s revenues if information is correlated.

A number of methods to make the ascending auction more robustare clear enough. For exam-

ple, bidders can be forced to bid “round” numbers, the exact increments can be prespecified, and
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bids can be made anonymous. These steps make it harder to use bids to signal other buyers. Lots

can be aggregated into larger packages to make it harder for bidders to divide the spoils, and keep-

ing secret the number of bidders remaining in the auction also makes collusion harder. But while

these measures can be useful, they do not eliminate the risksof collusion or of too few bidders. An

alternative is to choose a different type of auction.

In a standard sealed-bid auction (or “first-price” sealed-bid auction), each bidder simultane-

ously makes a single “best and final” offer, so collusion is much harder than in an ascending

auction because firms are unable to retaliate against bidders who fail to cooperate with them. Tacit

collusion is particularly difficult since firms are unable touse the bidding to signal.

From the perspective of encouraging more entry, the merit ofa sealed-bid auction is that the

outcome is much less certain than in an ascending auction. Anadvantaged bidder will probably

win a sealed-bid auction, but it must make its single final offer in the face of uncertainty about its

rivals’ bids, and because it wants to get a bargain its sealed-bid will not be the maximum it could

be pushed to in an ascending auction. So “weaker” bidders have at least some chance of victory,

even when they would surely lose an ascending auction. It follows that potential entrants are likely

to be more willing to enter a sealed-bid auction than an ascending auction.

A solution to the dilemma of choosing between the ascending (often called “English”) and

sealed-bid (or “Dutch”) forms is to combine the two in a hybrid, the “Anglo-Dutch”, which of-

ten captures the best features of both, and was first described and proposed in Klemperer (1998.

“Auctions with Almost Common Values.” European Economic Review. 42, pp. 757-69.).

In an Anglo-Dutch auction the auctioneer begins by running an ascending auction in which

price is raised continuously until all but two bidders have dropped out. The two remaining bidders

are then each required to make a final sealed-bid offer that isnot lower than the current asking

price, and the winner pays his bid.

Good auction design is not “one size fits all” and must be sensitive to the details of the context.



Chapter 11

Extensive Form Games with Incomplete

Information

11.1 Introduction

So far we have analyzed games in strategic form with and without incomplete information, and

extensive form games with complete information. In this section we will analyze extensive form

games with incomplete information. Many interesting strategic interactions can be modelled in this

form, such as signalling games, repeated games with incomplete information in which reputation

building becomes a concern, bargaining games with incomplete information, etc.

The analysis of extensive form games with incomplete information will show that we need

to provide further refinements of the Nash equilibrium concept. In particular, we will see that

subgame perfect equilibrium (SPE) concept that we have introduced when we studied extensive

form games with complete information is not adequate. To illustrate the main problem in the SPE

concept, however, the following game with imperfect, but complete, information is sufficient.

The strategic form of this game is given by

L R

O 1,3 1,3

T 2,1 0,0

B 0,2 0,1

It can be easily seen that the set of Nash equilibria of this game is{(T,L) ,(O,R)} . Since this

game has only one subgame, i.e., the game itself, this is alsothe set of SPE. But there is something
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Figure 11.1: Something Wrong with SPE

implausible about the(O,R) equilibrium. ActionR is strictly dominated for player 2 at the infor-

mation setI . Therefore, if the game ever reaches that information set, player 2 should never playR.

Knowing that, then, player 1 should playT, as she would know that player 2 would playL, and she

would get a payoff of 2 which is bigger than the payoff that shegets by playingO. Subgame perfect

equilibrium cannot capture this, because it does not test rationality of player 2 at the non-singleton

information setI .

The above discussion suggests the direction in which we haveto strengthen the SPE concept.

We would like players to be rational not only in very subgame but also in everycontinuation game.

A continuation game in the above example is composed of the information setI and the nodes that

follow from that information set. First, notice that the continuation game does not start with a

single decision node, and hence it is not a subgame. However,rationality of player 2 requires that

he plays actionL if the game ever reaches there.

In general, the optimal action at an information set may depend on which node in the informa-

tion set the play has reached. Consider the following modification of the above game.

Here the optimal action of player 2 at the information setI depends on whether player 1 has

playedT or B - information that 2 does not have. Therefore, analyzing player 2’s decision problem

at that information set requires him forming beliefs regarding which decision node he is at. In other

words, we require that

(1) (Condition 1: Beliefs) At each information set the player who moves at that information set

has beliefs over the set of nodes in that information set.

and

(2) (Condition 2: Sequential Rationality) At each information set, strategies must be optimal,

given the beliefs and subsequent strategies.
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Figure 11.2

Let us check what these two conditions imply in the game givenin Figure 11.1. Condition 1

requires that player 2 assigns beliefs to the two decision nodes at the information setI . Let the

probability assigned to the node that followsT beµ∈ [0,1] and the one assigned to the node that

follows B be 1−µ. Given these beliefs the expected payoff to actionL is

µ×1+(1−µ)×2 = 2−µ

whereas the expected payoff toR is

µ×0+(1−µ)×1 = 1−µ.

Notice that 2−µ > 1−µ for any µ∈ [0,1] . Therefore, Condition 2 requires that in equilibrium

player 2 never playsR with positive probability. This eliminates the subgame perfect equilibrium

(O,R) , which, we argued, was implausible.

Although it requires players to form beliefs at non-singleton information sets, condition 1, does

not specify how these beliefs are formed. As we are after an equilibrium concept, we require the

beliefs to be consistent with the players’ strategies. As anexample consider the game given in

Figure 2 again. Suppose player 1 plays actionsO, T, andB with probabilitiesβ1(O) , β1(T) , and

β1(B) , respectively. Also letµ be the belief assigned to node that followsT in the information set

I . If, for example,β1(T) = 1 andµ = 0, then we have a clear inconsistency between player 1’s

strategy and player 2’s beliefs. The only consistent beliefin this case would beµ = 1. In general,

we may applyBayes’ Rule, whenever possible, to achieve consistency:

µ=
β1(T)

β1(T)+ β1(B)
.
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Of course, this requires thatβ1 (T)+ β1(B) 6= 0. If β1 (T)+ β1(B) = 0, i.e., player 1 plays action

O with probability 1, then player 2 does not obtain any information regarding which one of his

decision nodes has been reached from the fact that the play has reachedI . The weakest consistency

condition that we can impose is then,

(3) (Condition 3: Weak Consistency)Beliefs are determined by Bayes’ Rule and strategies when-

ever possible.

These three conditions define the equilibrium conceptPerfect Bayesian Equilibrium (PBE).

11.2 Perfect Bayesian Equilibrium

To be able to define PBE more formally, letHi be the set of all information sets a player has in

the game, and letA(h) be the set of actions available at information seth. A behavioral strategy

for player i is a functionβi which assigns to each information seth∈ Hi a probability distribution

on A(h) , i.e.,

∑
a∈A(h)

βi (a) = 1.

Let Bi be the set of all behavioral strategies available for playeri andB be the set of all behavioral

strategy profiles, i.e.,B = ×iBi . A belief systemµ : X → [0,1] assigns to each decision nodex in

the information seth a probabilityµ(x), where∑x∈h µ(x) = 1 for all h ∈ H. Let M be the set of

all belief systems. Anassessment(µ,β) ∈ M×B is a belief system combined with a behavioral

strategy profile.

Perfect Bayesian equilibriumis an assessment(µ,β) that satisfy conditions 1-3.1 To illustrate,

consider the game in Figure 2 again. Letβi (a) be the probability assigned to actiona by playeri,

andµbe the belief assigned to the node that followsT in information setI . In any PBE of this game

we have(i) β2 (L) = 1, (ii) β2(L) = 0, or (iii) β2 (L) ∈ (0,1) . Let us check each of the possibilities

in turn:

(i) β2 (L) = 1. In this case, sequential rationality of player 2 implies that the expected payoff toL

is greater than or equal to the expected payoff toR, i.e.,

µ×1+(1−µ)×1≥ µ×0+(1−µ)×2

1Perfect Bayesian equilibrium, as it was defined in D. Fudenberg and J. Tirole (1991), “Perfect Bayesian and Se-
quential Equilibrium,”Journal of Economic Theory, 53, 236-60, puts more restrictions on the out-of-equilibrium beliefs
and hence is stronger than the definition provided here.
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or

1≥ 2−2µ⇐⇒ µ≥ 1/2.

Sequential rationality of player 1 on the other hand impliesthat she playsT, i.e.,β1(T) = 1. Bayes’

rule then implies that

µ=
β1(T)

β1(T)+ β1(B)
=

1
1+0

= 1,

which is greater than 1/2, and hence does not contradict player 2’s sequential rationality. Therefore,

the following assessment is a PBE

β1 (T) = 1,β2 (L) = 1,µ= 1.

(ii) β2 (L) = 0. Sequential rationality of player 2 now implies thatµ≤ 1/2, and sequential rational-

ity of player 1 implies thatβ1(O) = 1. Sinceβ1(T)+β1(B) = 0, however, we cannot apply Bayes’

rule, and hence condition 3 is trivially satisfied. Therefore, there is a continuum of equilibria of the

form

β1(O) = 1,β2 (L) = 0,µ≤ 1/2.

(iii) β2(L)∈ (0,1) . Sequential rationality of player 2 implies thatµ= 1/2. For player 1 the expected

payoff to O is 1, to T is 2β2 (L) , and toB is 0. Clearly, player 1 will never playB with positive

probability, that is in this case we always haveβ1 (B) = 0. If, β1 (O) = 1, then we must have

2β2 (L) ≤ 1⇐⇒ β2(L) ≤ 1/2, and we cannot apply Bayes’ rule. Therefore, any assessment that

has

β1(O) = 1,0 < β2(L) ≤ 1/2,µ = 1/2

is a PBE. If, on the other hand,β1(O) = 0, then we must haveβ1 (T) = 1, and Bayes’ rule implies

that µ = 1, contradictingµ = 1/2. If β1(0) ∈ (0,1) , then Bayes’ rule implies thatµ = 1, again

contradictingµ= 1/2.

Perfect Bayesian Equilibrium could be considered a weak equilibrium concept, because it does

not put enough restrictions on out-of-equilibrium beliefs. Consider the three-player game given

in Figure 11.3. The unique subgame perfect equilibrium of this game is(D,L,R′) . However, the

strategy profile(A,L,L′) together with the belief system that puts probability 1 to the node that

follows R is an assessment that satisfies conditions 1-3. Clearly, this is not a plausible outcome, as

(L,L′) is not a Nash equilibrium of the subgame that starts with player 2’s move. Also, notice that

player 3’s beliefs are not consistent with player 2’s strategy, but since player 3’s information set is

off-the-equilibrium, Bayes’ rule has no bite there.

The most commonly used equilibrium concept that do not suffer from such deficiencies is
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Figure 11.3: PBE may have ”unreasonable” beliefs

that of sequential equilibrium. Before we can define sequential equilibrium, however, we have to

define a particular consistency notion. A behavioral strategy profile is said to becompletely mixed

if every action receives positive probability.

Definition (Consistency): An assessment(µ,β) is consistent if there exists a completely mixed

sequence(µn,βn) that converges to(µ,β) such thatµn is derived fromβn using Bayes’ rule for all

n.

An assessment(µ,β) is asequential equilibrium if it is sequentially rational and consistent. To

illustrate, consider the game in Figure 11.3 again. Letµ be the probability assigned to the node that

follows L, and consider the assessment((A,L,L′) ,µ= 0) . For this to be a sequential equilibrium,

we have to find a completely mixed behavioral strategy profileβn such that

βn
1 (A) → 1,βn

2 (L) → 1,βn
3

(
L′
)
→ 1,µn =

βn
2(L)

βn
2 (L)+ βn

2(R)
→ 0,

which is not possible. However, the assessment given by((D,L,R′) ,µ= 1) is easily checked to

satisfy sequential rationality. To check consistency, let

βn
1(D) = 1−

1
n
,βn

2 (L) = 1−
1
n
,βn

3

(
R′
)

= 1−
1
n
,µn = 1−

1
n
.

Notice thatµn is derived fromβn via Bayes’ rule and(µn,βn) → (µ,β) . Therefore, this assessment

is a sequential equilibrium.
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11.3 Signalling Games

One of the most common applications in economics of extensive form games with incomplete

information is signalling games. In its simplest form, in a signalling game there are two players, a

senderS, and a receiver,R. Nature draws the type of the sender from a type setΘ, whose typical

element will be denotedθ. The probability of typeθ being drawn isp(θ) . Sender observes his type

and chooses a messagem∈ M. The receiver observesm (but notθ) and chooses an actiona∈ A.

The payoffs are given byuS(m,a,θ) anduR(m,a,θ) .

Let µ(θ|m) denote the receiver’s belief that the sender’s type isθ if messagem is observed.

Also let βS(m|θ) denote the probability that typeθ sender sends messagem, andβR(a|m) denote

the probability that the receiver chooses actiona after observing messagem. Given an assessment

(µ,β), the expected payoff of a sender of typeθ is then

US(µ,β,θ) = ∑
m

∑
a

βS(m|θ)βR(a|m)uS(m,a,θ) ,

whereas the expected payoff of the receiver conditional upon receiving messagem is

UR(µ,β|m) = ∑
θ

∑
a

µ(θ|m)βR(a|m)uR(m,a,θ) .

Also, Bayes’ rule implies,

µ
(
θ′|m′

)
=

βS(m′|θ′) p(θ′)
∑θ βS(m′|θ) p(θ)

,

whenever∑θ βS(m′|θ) p(θ) 6= 0, i.e., at least one type of sender sends the messagem′.

To illustrate consider the game in figure 11.4, known asBeer or Quiche. In this game Nature

(N) chooses the type of player 1 to be Tough(T) (with probability 0.9) or Weak(W) (with proba-

bility 0.1). Player 1 observes her type and chooses Quiche (Q) or Beer(B) . Player 2 observes only

the action choice of player 1 but not the type, and chooses to fight (F) or not to fight(A).

Let us find the pure strategy PBE of this game. There are four types of possible equilibria:

1. Each type chooses a different action (Separating Equilibria ):

(a) Weak chooses quiche, Tough chooses beer(βS(Q|W) = 1,βS(Q|T) = 0) :

Bayes’ rule implies that

µ(W|Q) =
βS(Q|W) p(W)

βS(Q|W) p(W)+ βS(Q|T) p(T)
=

1×0.1
1×0.1+0×0.9

= 1.

Similarly, µ(T|B)= 1. Therefore, the receiver’s sequential rationality impliesthatβR(A|B)=



138 Extensive Form Games with Incomplete Information

bN

W

T

r

1Q B

r
1Q B

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

2

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

2

r@
@

@
@@

�
�

�
��

F

A

r1,1

r3,0

r@
@

@
@@

�
�

�
��

F

A

r0,0

r2,1

r�
�

�
��

@
@

@
@@

F

A

r 0,1

r 2,0

r�
�

�
��

@
@

@
@@

F

A

r 1,0

r 3,1

Figure 11.4: Beer or Quiche

1 andβR(F|Q) = 1. Sequential rationality of the sender, then, implies thatβS(Q|W) =

0, contradicting our hypothesis. So, there is no PBE of this type.

(b) Weak chooses beer, Tough chooses quiche(βS(Q|W) = 0,βS(Q|T) = 1) :

Bayes’ rule implies thatµ(T|Q) = 1 andµ(W|B) = 1. Therefore, the receiver’s sequen-

tial rationality implies thatβR(F|B) = 1 andβR(A|Q) = 1. Sequential rationality of the

sender, then, implies thatβS(Q|W) = 1, contradicting our hypothesis. So, there is no

PBE of this type either.

2. Both types choose the same action (Pooling Equilibria )

(a) Both choose quiche(βS(Q|W) = 1,βS(Q|T) = 1) :

Bayes’ rule implies thatµ(W|Q) = 0.1 andµ(T|Q) = 0.9. Therefore, after observing

Q, the receiver’s expected payoff toF is

0.1×1+0.9×0 = 0.1
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and expected payoff toA is

0.1×0+0.9×1 = 0.9,

and hence sequential rationality implies thatβR(A|Q) = 1. The weak type’s sequen-

tial rationality implies, then, thatβS(Q|W) = 1, confirming our hypothesis. For the

tough type, playing quiche would be rational only if the receiver chooses to fight af-

ter observing beer. Therefore, we must haveβR(F |B) = 1, which in turn requires that

µ(W|B) ≥ 1/2. Therefore, any assessment which satisfies the following is aPBE:

βS(Q|W) = 1,βS(Q|T) = 1,βR(A|Q) = 1,βR(F|B) = 1,

µ(W|Q) = 0.1,µ(W|B) ≥ 1/2.

(b) Both choose beer(βS(B|W) = 1,βS(B|T) = 1) : It is easily checked that the following

constitute the set of PBE of this type:

βS(B|W) = 1,βS(B|T) = 1,βR(F|Q) = 1,βR(A|B) = 1,

µ(W|B) = 0.1,µ(W|Q) ≥ 1/2.

Job Market Signalling2

Suppose there are two types of workers, a high ability(H) and a low ability(L) type. We

let the probability of having high ability be denoted byp∈ (0,1) . The output is equal to 2 if the

worker is of high ability and equal to 1 if he is of low ability.The worker can choose a level of

educatione≥ 0 before applying for a job. However, the cost of having levelof educatione is e

for the low ability worker ande/2 for the high ability worker. The worker knows his ability but

the employer observes only the level of education, not the ability. Therefore, the employer offers a

wage schedulew(e) as a function of education. The payoffs of the workers are given by

u(w,e,H) = w−e/2,

u(w,e,L) = w−e.

We assume that the job market is competitive and hence the employer offers a wage schedule

w(e) such that the expected profit is equal zero. Therefore, ifµ(H|e) denotes the belief of the

employer that the worker is of high ability given that he has chosen education levele, the wage

2Based on M. Spence (1973), “Job Market Signalling,”Quarterly Journal of Economics, 87, 355-74.
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schedule will satisfyw(e) = 2µ(H|e)+ (1−µ(H|e)) . We are interested in the set of PBE of this

game. LeteH and eL denote the education levels chosen by the high and low ability workers,

respectively.

1. Separating Equilibria (eH 6= eL): The Bayes’ rule in this case implies thatµ(H|eH) = 1

andµ(L|eL) = 1. Therefore, we havew(eH) = 2 andw(eL) = 1. Given that, the low ability

worker will choosee= 0. In equilibrium, it must be such that the low ability worker does

not want to mimic the high ability worker and vice versa. Therefore, we need to have

2−
eH

2
≥ 1

or eH ≤ 2 and

1≥ 2−eH

or 1≤ eH . We can support anyeH between 1 and 2 with the following belief system

µ(H|e) =

{

0, e< eH

1, e≥ eH
.

2. Pooling Equilibria (eH = eL = e∗): The Bayes’ rule in this case implies thatµ(H|e∗) = p

andµ(L|e∗) = 1− p. Therefore,w(e∗) = 2p+(1− p) . = p+1 and hence

u(w,e∗,H) = p+1−e∗/2,

u(w,e∗,L) = p+1−e∗.

It must be the case that

p+1−e∗/2≥ 0

p+1−e∗ ≥ 0.

We also need to have

p+1−e∗/2≥ w(e)−e/2,

p+1−e∗ ≥ w(e)−e,

for all e≥ 0. The above inequalities are satisfied if and only ife∗ ≤ p. We can, in turn, show



11.3. Signalling Games 141

that any suche∗ can be supported as an equilibrium by the following belief system

µ(H|e) =

{

p, e= e∗

0, e 6= e∗


