
Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

SAT Solving

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

2017.3.24

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Outline

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Outline

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Outline

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Outline

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

The SAT Problem

A set of boolean variables: X = {x1, x2, ..., xn}.
Literals: x1,¬x1, x2,¬x2, ..., xn,¬xn

A set of Clauses: x1 ∨¬x2, x2 ∨ x3, x2 ∨¬x4,¬x1 ∨¬x3 ∨ x4, ...

A Conjunctive Normal Form (CNF) formula:

ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

The satisfiability problem (SAT): test whether there exists an
assignment of truth values to the variables in F under which F
evaluates to true.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

The SAT Problem

A set of boolean variables: X = {x1, x2, ..., xn}.
Literals: x1,¬x1, x2,¬x2, ..., xn,¬xn

A set of Clauses: x1 ∨¬x2, x2 ∨ x3, x2 ∨¬x4,¬x1 ∨¬x3 ∨ x4, ...

A Conjunctive Normal Form (CNF) formula:

ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

The satisfiability problem (SAT): test whether there exists an
assignment of truth values to the variables in F under which F
evaluates to true.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT

The first NP-Complete problem, starting NP-complete theory
[Stephen Cook, 1971]

Many theoretical results

Many important applications

Competitions, open source benchmarks and solvers

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT

The first NP-Complete problem, starting NP-complete theory
[Stephen Cook, 1971]

Many theoretical results

Many important applications

Competitions, open source benchmarks and solvers

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT

The first NP-Complete problem, starting NP-complete theory
[Stephen Cook, 1971]

Many theoretical results

Many important applications

Competitions, open source benchmarks and solvers

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT: theory vs. practice

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT: theory vs. practice

The NP-completeness of the problem indicates that it is likely
need to cost an exponential time in the worst case.

The only hope for a practical solver is that by being smart in
the search.

Modern SAT solvers can solve formulas with up to millions of
variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT: theory vs. practice

The NP-completeness of the problem indicates that it is likely
need to cost an exponential time in the worst case.

The only hope for a practical solver is that by being smart in
the search.

Modern SAT solvers can solve formulas with up to millions of
variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

About SAT: theory vs. practice

The NP-completeness of the problem indicates that it is likely
need to cost an exponential time in the worst case.

The only hope for a practical solver is that by being smart in
the search.

Modern SAT solvers can solve formulas with up to millions of
variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Some recent applications of SAT

Design of Intel Core 7

Verification of driven programs in Windows 7

Math Theorem Proving

Proving the answer to Boolean Pythagorean Triples (PTN)
problem is NO (the problem asks: can the set of natural
numbers be divided into two parts, such that no part contains
a Pythagorean triple (a, b, c), i.e., a2 + b2 = c2.) [Marijn et
al., 2016]

Radio spectrum reallocation of USA (7-billion dollars earnings)
by a software named SATFC [Leyton-Brown et al., PNAS
2017], in which a core SAT solver is our solver DCCASat.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Some recent applications of SAT

Design of Intel Core 7

Verification of driven programs in Windows 7

Math Theorem Proving

Proving the answer to Boolean Pythagorean Triples (PTN)
problem is NO (the problem asks: can the set of natural
numbers be divided into two parts, such that no part contains
a Pythagorean triple (a, b, c), i.e., a2 + b2 = c2.) [Marijn et
al., 2016]

Radio spectrum reallocation of USA (7-billion dollars earnings)
by a software named SATFC [Leyton-Brown et al., PNAS
2017], in which a core SAT solver is our solver DCCASat.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Some recent applications of SAT

Design of Intel Core 7

Verification of driven programs in Windows 7

Math Theorem Proving

Proving the answer to Boolean Pythagorean Triples (PTN)
problem is NO (the problem asks: can the set of natural
numbers be divided into two parts, such that no part contains
a Pythagorean triple (a, b, c), i.e., a2 + b2 = c2.) [Marijn et
al., 2016]

Radio spectrum reallocation of USA (7-billion dollars earnings)
by a software named SATFC [Leyton-Brown et al., PNAS
2017], in which a core SAT solver is our solver DCCASat.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Some recent applications of SAT

Design of Intel Core 7

Verification of driven programs in Windows 7

Math Theorem Proving

Proving the answer to Boolean Pythagorean Triples (PTN)
problem is NO (the problem asks: can the set of natural
numbers be divided into two parts, such that no part contains
a Pythagorean triple (a, b, c), i.e., a2 + b2 = c2.) [Marijn et
al., 2016]

Radio spectrum reallocation of USA (7-billion dollars earnings)
by a software named SATFC [Leyton-Brown et al., PNAS
2017], in which a core SAT solver is our solver DCCASat.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Solving SAT

Methods for solving SAT can be classified to two classes:

Complete methods: DPLL −→ Conflict Driven Clause
Learning (CDCL)

Guarantee the correct solution when the algorithm terminates,
but it can cost unreasonable long time

Incomplete methods: mainly Local search

Can not prove the unsatisfiability of a formula, but may find a
solution fast for certain types of instances

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Solving SAT

Methods for solving SAT can be classified to two classes:

Complete methods: DPLL −→ Conflict Driven Clause
Learning (CDCL)

Guarantee the correct solution when the algorithm terminates,
but it can cost unreasonable long time

Incomplete methods: mainly Local search

Can not prove the unsatisfiability of a formula, but may find a
solution fast for certain types of instances

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Backtracking framework of Complete Search for SAT

search space of a formula

figure taken from [Sharad Malik, Lintao Zhang, CACM 2009]

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Basic Rules

Pure Literals

A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula.
The variable should be assigned to make the pure literal true.

E.g. ϕ = (x1 ∨¬x2)∧ (x2 ∨ x3)∧ (x1 ∨¬x3 ∨¬x4)∧ (x4 ∨¬x5),
x1 and ¬x5 are pure literals.
A reference technique until the mid 90s; nowadays seldom
used.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Basic Rules

Pure Literals

A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula.
The variable should be assigned to make the pure literal true.
E.g. ϕ = (x1 ∨¬x2)∧ (x2 ∨ x3)∧ (x1 ∨¬x3 ∨¬x4)∧ (x4 ∨¬x5),
x1 and ¬x5 are pure literals.

A reference technique until the mid 90s; nowadays seldom
used.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Basic Rules

Pure Literals

A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula.
The variable should be assigned to make the pure literal true.
E.g. ϕ = (x1 ∨¬x2)∧ (x2 ∨ x3)∧ (x1 ∨¬x3 ∨¬x4)∧ (x4 ∨¬x5),
x1 and ¬x5 are pure literals.
A reference technique until the mid 90s; nowadays seldom
used.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Basic Rules

Unit Propagation

Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied.
E.g., for unit clause (x1 ∨ ¬x2 ∨ ¬x3), and x1 = 0, x2 = 1, then
x3 must be assigned value 0.

Very important technique even nowadays.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Basic Rules

Unit Propagation

Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied.
E.g., for unit clause (x1 ∨ ¬x2 ∨ ¬x3), and x1 = 0, x2 = 1, then
x3 must be assigned value 0.
Very important technique even nowadays.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

DPLL Algorithm

DPLL algorithm [Davis and Putnam 1960, Davis, Logemann and
Loveland 1962]

backtracking framework

equipped with simple reasoning techniques including pure
literals and unit propagations.

heuristics for variable ordering and value ordering.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

DPLL Algorithm

Example:

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

DPLL Algorithm

Example:

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

DPLL Algorithm

Example:

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

DPLL Algorithm

Example:

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

From DPLL to CDCL

Conflict Driven Clause Learning (CDCL)

Learning and non-chronological backtracking, 1996

Conflict Driven Clause Learning (CDCL), 1999

Efficient data structures

Restart

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Clause Learning

Clause Learning:

During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Clause Learning

Clause Learning:

During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

Local search for SAT: [Selman et al. 1992; Gu 1992]

start with a complete assignment

iteratively flip the truth value of a variable, until a satisfying
assignment is found.

Local search is incomplete

It cannot prove the unsatisfiability of a formula

It cannot guarantee to find a solution even for satisfiable
formula, but adding random walks can make it Probabilistic
Approximate Complete.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

Local search for SAT: [Selman et al. 1992; Gu 1992]

start with a complete assignment

iteratively flip the truth value of a variable, until a satisfying
assignment is found.

Local search is incomplete

It cannot prove the unsatisfiability of a formula

It cannot guarantee to find a solution even for satisfiable
formula, but adding random walks can make it Probabilistic
Approximate Complete.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

Local search for SAT: [Selman et al. 1992; Gu 1992]

start with a complete assignment

iteratively flip the truth value of a variable, until a satisfying
assignment is found.

Local search is incomplete

It cannot prove the unsatisfiability of a formula

It cannot guarantee to find a solution even for satisfiable
formula, but adding random walks can make it Probabilistic
Approximate Complete.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

cost(α): the number of unsatisfied clauses under an assignment α.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

cost(α): the number of unsatisfied clauses under an assignment α.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Local Search for SAT

cost(α): the number of unsatisfied clauses under an assignment α.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Properties of Variables

Local search algorithms usually use scoring functions to pick the
flipping variable.

make(x): the number of currently unsatisfied clauses that
would become satisfied by flipping x .

break(x): the number of currently satisfied clauses that would
become unsatisfied by flipping x .

score(x): cost(F , α)− cost(F , α′), i.e., the number of
currently unsatisfied clauses minus the number of unsatisfied
clauses if x were to be flipped.

It is easy to see that score(x) = make(x)− break(x).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Properties of Variables

Local search algorithms usually use scoring functions to pick the
flipping variable.

make(x): the number of currently unsatisfied clauses that
would become satisfied by flipping x .

break(x): the number of currently satisfied clauses that would
become unsatisfied by flipping x .

score(x): cost(F , α)− cost(F , α′), i.e., the number of
currently unsatisfied clauses minus the number of unsatisfied
clauses if x were to be flipped.

It is easy to see that score(x) = make(x)− break(x).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Properties of Variables

Local search algorithms usually use scoring functions to pick the
flipping variable.

make(x): the number of currently unsatisfied clauses that
would become satisfied by flipping x .

break(x): the number of currently satisfied clauses that would
become unsatisfied by flipping x .

score(x): cost(F , α)− cost(F , α′), i.e., the number of
currently unsatisfied clauses minus the number of unsatisfied
clauses if x were to be flipped.

It is easy to see that score(x) = make(x)− break(x).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Properties of Variables

Local search algorithms usually use scoring functions to pick the
flipping variable.

make(x): the number of currently unsatisfied clauses that
would become satisfied by flipping x .

break(x): the number of currently satisfied clauses that would
become unsatisfied by flipping x .

score(x): cost(F , α)− cost(F , α′), i.e., the number of
currently unsatisfied clauses minus the number of unsatisfied
clauses if x were to be flipped.

It is easy to see that score(x) = make(x)− break(x).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Properties of Variables

Local search algorithms usually use scoring functions to pick the
flipping variable.

make(x): the number of currently unsatisfied clauses that
would become satisfied by flipping x .

break(x): the number of currently satisfied clauses that would
become unsatisfied by flipping x .

score(x): cost(F , α)− cost(F , α′), i.e., the number of
currently unsatisfied clauses minus the number of unsatisfied
clauses if x were to be flipped.

It is easy to see that score(x) = make(x)− break(x).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Scoring Functions of Variables

A scoring function can be a simple variable property or any
mathematical expression with one or more properties.

break(x)

score(x)

age(x)

score(x) + age(x)/T

score(x)a

bscore(x)

...

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

1 Introduction

2 Complete Algorithms

3 Local Search Algorithms

4 Configuration Checking for SAT

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

The Cycling Problem of Local Search

Cycling problem, i.e., revisiting candidate solutions

Cycling is an inherent problem of local search: local search
does not allow to memorize all previously visited parts of the
search space.

A key factor degrading the performance of local search

wastes time on revisiting

prevents it from getting out of local minima

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

The Cycling Problem of Local Search

Cycling problem, i.e., revisiting candidate solutions

Cycling is an inherent problem of local search: local search
does not allow to memorize all previously visited parts of the
search space.

A key factor degrading the performance of local search

wastes time on revisiting

prevents it from getting out of local minima

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

The Cycling Problem of Local Search

Cycling problem, i.e., revisiting candidate solutions

Cycling is an inherent problem of local search: local search
does not allow to memorize all previously visited parts of the
search space.

A key factor degrading the performance of local search

wastes time on revisiting

prevents it from getting out of local minima

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Previous Methods

Naive methods

Random walk
allow non-improving steps with a probability (simulated
annealing)
Restart

The tabu mechanism forbids reversing the recent changes,
where the strength of forbidding is controlled by a parameter
called tabu tenure [Fred Glover, 1989].

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Previous Methods

Naive methods

Random walk
allow non-improving steps with a probability (simulated
annealing)
Restart

The tabu mechanism forbids reversing the recent changes,
where the strength of forbidding is controlled by a parameter
called tabu tenure [Fred Glover, 1989].

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Configuration Checking

Address cycling problem by Configuration Checking (CC) [Artif.
Intel. 2011].

CC is found effective for the following types of problems:

Assignment Problems: to find an assignment to all variables
such that satisfies the constraints (and optimized).

Subset Problems: to find a subset from a universe set such
that satisfies the constraints (and optimized).

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Configuration Checking for SAT

CC says: for a variable, if after it was flipped, its circumstance has
not changed, then it should not change its value back.

first time to consider variables’ circumstance!

CC relies on the concept of the ”configuration” of variables, which
is some form of circumstance of the variables.

Definition

The configuration of a variable x is a vector Cx consisting of truth
value of all x ’s neighboring variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Configuration Checking for SAT

CC says: for a variable, if after it was flipped, its circumstance has
not changed, then it should not change its value back.
first time to consider variables’ circumstance!

CC relies on the concept of the ”configuration” of variables, which
is some form of circumstance of the variables.

Definition

The configuration of a variable x is a vector Cx consisting of truth
value of all x ’s neighboring variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Configuration Checking for SAT

CC says: for a variable, if after it was flipped, its circumstance has
not changed, then it should not change its value back.
first time to consider variables’ circumstance!

CC relies on the concept of the ”configuration” of variables, which
is some form of circumstance of the variables.

Definition

The configuration of a variable x is a vector Cx consisting of truth
value of all x ’s neighboring variables.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Intuition of CC

Configuration Checking for SAT: For a variable x , if the
configuration of x has not changed since x ’s last flip, then x is
forbidden to be flipped.

reduce local structure cycles

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Intuition of CC

Configuration Checking for SAT: For a variable x , if the
configuration of x has not changed since x ’s last flip, then x is
forbidden to be flipped.

reduce local structure cycles

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Variants of CC for SAT

A typical CC strategy for SAT is Neighboring Variables based CC.

We can have variants of CC strategy by defining configuration in
different ways.

Definition

In Clause States based CC (CSCC), the configuration of a variable
x is a vector that consists of the states of all the clauses in which x
appears.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Variants of CC for SAT

A typical CC strategy for SAT is Neighboring Variables based CC.

We can have variants of CC strategy by defining configuration in
different ways.

Definition

In Clause States based CC (CSCC), the configuration of a variable
x is a vector that consists of the states of all the clauses in which x
appears.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Combination of CC strategies

We can also combine different CC strategies in one algorithm.

Double Configuration Checking (DCC) for SAT:

Lemma

If a variable is configuration changed w.r.t. CSCC criterion, then it
is is configuration changed w.r.t. NVCC, while the reverse is not
true.

DCC heuristic: first selects a CSCC variable; if no such variable,
selects a NVCC variable.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Success of CC for SAT

Many participant solvers use CC in SAT Competitions from
2012, including 10 medal-awarded ones.

AAAI 2013 Tutorial Forum: ”It is outstanding. It is likely
changing the game.”

Used in solving real world application projects.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

CC and variable neighborhood

The effectiveness of CC is related to the neighborhood of variables.

Theorem

For a random k-SAT formula Fk(n,m), if ln(n− 1) < k(k−1)r
(n−1) , then

CC degrades forbids only one variable each step.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

When CC Becomes Ineffective

f (n) = ln(n − 1)− k(k−1)r
n−1 is a monotonic increasing with n

(n > 1).
f (n) < 0 iff n ≤ bn∗c, where n∗ is a real number s.t. f (n∗) = 0.

For phase-transition area of k-SAT, such n∗ values are as follows.

Formulas 3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
(r = 4.2) (r = 9.0) (r = 20) (r = 40) (r = 85)

n∗ 11.652 32.348 90.093 223.095 564.595

Table: The n∗ value such that when n < n∗, the CC strategy degrades to
a trivial case.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

When CC Becomes Ineffective

f (n) = ln(n − 1)− k(k−1)r
n−1 is a monotonic increasing with n

(n > 1).
f (n) < 0 iff n ≤ bn∗c, where n∗ is a real number s.t. f (n∗) = 0.
For phase-transition area of k-SAT, such n∗ values are as follows.

Formulas 3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
(r = 4.2) (r = 9.0) (r = 20) (r = 40) (r = 85)

n∗ 11.652 32.348 90.093 223.095 564.595

Table: The n∗ value such that when n < n∗, the CC strategy degrades to
a trivial case.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Other works

Some of my other works on SAT solving:

subscore: a scoring function considering the satisfaction
degree of clauses.

Combining local search with reasoning, e.g., unit propagation,
clause learning.

Automatic algorithm configuration.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Other works

Some of my other works on SAT solving:

subscore: a scoring function considering the satisfaction
degree of clauses.

Combining local search with reasoning, e.g., unit propagation,
clause learning.

Automatic algorithm configuration.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Other works

Some of my other works on SAT solving:

subscore: a scoring function considering the satisfaction
degree of clauses.

Combining local search with reasoning, e.g., unit propagation,
clause learning.

Automatic algorithm configuration.

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Summary

Messages to take:

Gap between theory and practice of SAT

Current state of SAT solving

What is CDCL

Local search

Configuration checking

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Summary

Messages to take:

Gap between theory and practice of SAT

Current state of SAT solving

What is CDCL

Local search

Configuration checking

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Summary

Messages to take:

Gap between theory and practice of SAT

Current state of SAT solving

What is CDCL

Local search

Configuration checking

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Summary

Messages to take:

Gap between theory and practice of SAT

Current state of SAT solving

What is CDCL

Local search

Configuration checking

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Summary

Messages to take:

Gap between theory and practice of SAT

Current state of SAT solving

What is CDCL

Local search

Configuration checking

Shaowei Cai SAT Solving



Introduction Complete Algorithms Local Search Algorithms Configuration Checking for SAT

Thank you!

Shaowei Cai SAT Solving


	Introduction
	Complete Algorithms
	Local Search Algorithms
	Configuration Checking for SAT

