Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof

Forgetting and Uniform Interpolation in Multi-Agent Modal Logics

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

¹Dept. of Computer Science, Sun Yat-sen University, China ²LORIA, CNRS – Université de Lorraine, France ³Dept. of Computer Science, Jinan University, China

Mar 24, 2018

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Introduction				

- \mathcal{P} : a finite set of propositions;
- $p \in \mathcal{P}$;
- φ : the original formula;
- ψ : a result of forgetting p in φ , *i.e.*, the strongest consequence of φ without p:
 - **1** ψ does not contain p;
 - 2 For any query η which does not contain $p, \varphi \models \eta$ iff $\psi \models \eta$.

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Introduction				

- \mathcal{P} : a finite set of propositions;
- $p \in \mathcal{P}$;
- φ : the original formula;
- ψ : a result of forgetting p in φ , *i.e.*, the strongest consequence of φ without p:
 - ψ does not contain p;
 - 2 For any query η which does not contain $p, \varphi \models \eta$ iff $\psi \models \eta$.
- ψ : the uniform interpolant of ϕ on $\mathcal{P} \setminus \{p\}$.

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Introduction				

- \mathcal{P} : a finite set of propositions;
- $p \in \mathcal{P}$;
- φ : the original formula;
- ψ : a result of forgetting p in φ , *i.e.*, the strongest consequence of φ without p:
 - ψ does not contain p;
 - 2 For any query η which does not contain $p, \varphi \models \eta$ iff $\psi \models \eta$.
- ψ : the uniform interpolant of ϕ on $\mathcal{P} \setminus \{p\}$.

How to compute ψ ?

 Introduction
 Preliminaries
 Forgetting
 Conclusions and future work
 Proof

 A brute-force approach to propositional logic
 Proof
 Proof
 Proof
 Proof

- **9** Transform φ into an equivalent principal DNF $\bigvee_{t \in \Phi} t$;
- **2** Obtain t^p by eliminating any occurrence of p or $\neg p$;
- $\ \ \, {\textstyle \bigcirc} \ \ \, \bigvee_{t\in\Phi}t^p \ \, \text{is a result of forgetting} \ \, p \ \, \text{in} \ \, \varphi.$

(本部) (本語) (本語)

Introduction Preliminaries Forgetting Conclusions and future work Proof A brute-force approach to propositional logic Transform φ into an equivalent principal DNF $\bigvee_{t \in \Phi} t$;

- **2** Obtain t^p by eliminating any occurrence of p or $\neg p$;
- $\ \ \, {\textstyle \bigcirc} \ \ \, \bigvee_{t\in\Phi}t^p \ \, \text{is a result of forgetting} \ \, p \ \, \text{in} \ \, \varphi.$

Example

$$\bullet \ \varphi = (p \wedge q) \vee (\neg p \wedge \neg r);$$

•
$$\varphi \equiv (\mathbf{p} \wedge q \wedge r) \lor (\mathbf{p} \wedge q \wedge \neg r) \lor (\neg \mathbf{p} \wedge q \wedge \neg r) \lor (\neg \mathbf{p} \wedge \neg q \wedge \neg r);$$

•
$$\psi = (q \wedge r) \lor (q \wedge \neg r) \lor (\neg q \wedge \neg r).$$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

A brute-force approach to propositional logic

- **9** Transform φ into an equivalent principal DNF $\bigvee_{t \in \Phi} t$;
- **2** Obtain t^p by eliminating any occurrence of p or $\neg p$;
- $\ \, {\textstyle \bigcirc} \ \, \bigvee_{t\in\Phi}t^p \ \, \text{is a result of forgetting} \ \, p \ \, \text{in} \ \, \varphi.$

Example

$$\bullet \ \varphi = (p \wedge q) \vee (\neg p \wedge \neg r);$$

• $\varphi \equiv (p \land q \land r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r);$

•
$$\psi = (q \wedge r) \lor (q \wedge \neg r) \lor (\neg q \wedge \neg r).$$

How about multi-agent modal logics?

• Modal logic: propositional logic + \mathbf{K}_i operators;

•
$$\mathbf{K}_i \varphi$$
: agent *i* knows φ .

イロン イヨン イヨン イヨン

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Outline				

2 Preliminaries

3 Forgetting

4 Conclusions and future work

< ≣⇒

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Outline				

- 2 Preliminaries
- 3 Forgetting
- 4 Conclusions and future work

⊸ ≣ ≯

A ►

Liangda ${\rm Fang}^{1,3},$ Yongmei ${\rm Liu}^1$ and Hans van Ditmarsch^2

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Modal lang	guage: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$			

Definition (Syntax of \mathcal{L}_{C}^{K})

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \mathbf{C} \varphi,$$

where $p \in \mathcal{P}$, $i \in \mathcal{A}$, and $\varphi \in \mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$.

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

Definition (Syntax of $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K}_i \varphi \mid \mathbf{C} \varphi,$$

where $p \in \mathcal{P}$, $i \in \mathcal{A}$, and $\varphi \in \mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$.

Definition (Two sublanguages)

- $\mathcal{L}_n^{\mathbf{K}}$: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$ without \mathbf{C} operator;
- **2** $\mathcal{L}_{\mathbf{PC}}^{\mathbf{K}}$: $\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$ with propositional common knowledge, *i.e.*, any φ appearing in $\mathbf{C}\varphi$ must be propositional.

イロト イヨト イヨト イヨト

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Kripke mo	dels			

Definition (Kripke models)

A Kripke model is a tuple $\langle S,R,V\rangle$ where

- S: a non-empty set of states,
- R: for each $i \in A$, $R_i \subseteq S \times S$ is a relation on states.
- $V\colon\,S\to 2^{\mathcal{P}}$ is a function assigning to each proposition in a subset of states.

A pair (M, s) is called a pointed model.

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Kripke mo	dels			

Definition (Kripke models)

A Kripke model is a tuple $\langle S, R, V \rangle$ where

- S: a non-empty set of states,
- R: for each $i \in A$, $R_i \subseteq S \times S$ is a relation on states.
- $V\colon\,S\to 2^{\mathcal{P}}$ is a function assigning to each proposition in a subset of states.

A pair (M, s) is called a pointed model.

L	K	D	Т	K4	S4	K45	KD45	S5
Serial		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
Reflexive			\checkmark		\checkmark			\checkmark
Transitive				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Euclidean						\checkmark	\checkmark	\checkmark

Cover modalites

Definition (Cover modalities)

where $\hat{\mathbf{K}}_i \doteq \neg \mathbf{K}_i \neg$ and $\hat{\mathbf{C}} \doteq \neg \mathbf{C} \neg$.

We can use ∇_i (resp. ∇) modality instead of \mathbf{K}_i (resp. C) modality.

イロト イヨト イヨト イヨト

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Canonical	formerula a			

Definition (Canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set E_k^P as follows:

•
$$E_0^P = \{ \bigwedge_{p \in \mathcal{X}} p \land \bigwedge_{p \in P \setminus \mathcal{X}} \neg p \mid \mathcal{X} \subseteq P \};$$

•
$$E_{k+1}^P = \{\delta_0 \land \bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i \mid \delta_0 \in E_0^P \text{ and } \Phi_i \subseteq E_k^P\}.$$

 $\delta_k \in E_k$:

- completely characterizes a Kripke model up to depth k;
- a minterm in modal logics.

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
с ·	c i			

Canonical formulas

Figure: Kripke model

1000 TOO

Introduction Preliminaries Forgetting Conclusions and future work Proof
Canonical formulas

Proposition (Moss, 2007)

Any formula in $\mathcal{L}_n^{\mathbf{K}}$ can be equivalently transformed into a disjunction of satisfiable canonical formulas.

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

A⊒ ▶ ∢ ≣

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Outline				

- 2 Preliminaries
- 3 Forgetting
- 4 Conclusions and future work

Liangda ${\rm Fang}^{1,3},$ Yongmei ${\rm Liu}^1$ and Hans van Ditmarsch^2

< ≣⇒

A ■

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Computatior	n of forge [.]	tting		

- **2** Obtain δ^p by eliminating any occurrence of p or $\neg p$;
- $\ \ \, {\textstyle \bigcirc} \ \ \, \bigvee_{\delta\in\Phi}\delta^p \ \ \, \text{is a result of forgetting }p \ \ \, \text{in }\varphi.$

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Computation	n of forge	etting		

- **2** Obtain δ^p by eliminating any occurrence of p or $\neg p$;
- $\ \, {\textstyle \bigcirc} \ \, \bigvee_{\delta\in\Phi} \delta^p \ \, \text{is a result of forgetting } p \ \, \text{in } \varphi.$

Example

•
$$\varphi = \hat{\mathbf{K}}_i p \wedge \hat{\mathbf{K}}_i \neg p;$$

•
$$\varphi \equiv \delta_1 \vee \delta_2$$
;

•
$$\delta_1 = p \wedge \nabla_i \{p, \neg p\};$$

•
$$\delta_2 = \neg p \land \nabla_i \{p, \neg p\};$$

•
$$\delta_1^p \vee \delta_2^p \equiv \top \wedge \nabla_i \{\top\} \equiv \hat{\mathbf{K}}_i \top.$$

æ

Image: A □ > A

Theorem

Let L be K_n , D_n , T_n , K45_n, KD45_n or S5_n. Let δ be a canonical formula satisfiable in L. Then, δ^p is a result of forgetting p in δ .

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

d7 ▶ -

-∢ ≣ ≯

Theorem

Let L be K_n , D_n , T_n , K45_n, KD45_n or S5_n. Let δ be a canonical formula satisfiable in L. Then, δ^p is a result of forgetting p in δ .

Corollary

 K_n , D_n , T_n , $K45_n$, $KD45_n$ and $S5_n$ are closed under forgetting.

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

< **₽** ► < E

Definition (Uniform interpolation)

A logic L has uniform interpolation: In the logic L, for any formula φ and any proposition p, there is a formula ψ that is a uniform interpolant of φ on $\mathcal{P} \setminus p$.

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

Definition (Uniform interpolation)

A logic L has uniform interpolation: In the logic L, for any formula φ and any proposition p, there is a formula ψ that is a uniform interpolant of φ on $\mathcal{P} \setminus p$.

Corollary

 K_n , D_n , T_n , $K45_n$, $KD45_n$ and $S5_n$ have uniform interpolation.

- Negative result: KC is not closed under forgetting. [Studer, 2009]
- We consider the propositional common knowledge case, *i.e.*, $\mathcal{L}_{\mathbf{PC}}^{\mathbf{K}}$ where any φ appearing in $\mathbf{C}\varphi$ must be propositional.

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set C_k^P as follows:

•
$$C_0^P = \{\theta \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P\};$$

•
$$C_{k+1}^P = \{\theta \land (\bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i) \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P, \Phi_i \subseteq C_k^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P \}.$$

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

A ►

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let $P \subseteq \mathcal{P}$ be finite. We inductively define the set C_k^P as follows:

•
$$C_0^P = \{\theta \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P\};$$

•
$$C_{k+1}^P = \{\theta \land (\bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i) \land \nabla \Phi_{\mathcal{A}} \mid \theta \in E_0^P, \Phi_i \subseteq C_k^P \text{ and } \Phi_{\mathcal{A}} \subseteq E_0^P \}.$$

Proposition

Any formula in \mathcal{L}_{PC}^{K} can be equivalently transformed into a disjunction of satisfiable pc-canonical formulas.

Theorem

Let L be KC, DC, TC, K45C, KD45C or S5C. Let δ be a pc-canonical formula satisfiable in L. Then, δ^p is a result of forgetting p in δ .

Corollary

KPC, DPC, TPC, K45PC, KD45PC and S5PC are closed under forgetting, and have uniform interpolation.

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Conclusions				

- Prove that K_n, D_n, T_n, K45_n, KD45_n and S5_n are closed under forgetting.
- Extend the above results to propositional common knowledge case.

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

	Preliminaries	Introduction	ries	Forgetting	Conclusions and future work	Proof
Current Results	oulto	Current				

L	K	D	Т	K4	S4	K45	KD45	S5
$\mathcal{L}_1^{\mathbf{K}}$	\checkmark^1	$\sqrt{7}$	\checkmark^5	X^5	\mathbf{X}^2	\checkmark	\checkmark	\checkmark^3
$\mathcal{L}_n^{\mathbf{K}}$	\checkmark^4	$\sqrt{7}$	$\checkmark^{3,5}$	X^5	\mathbf{X}^2	\checkmark	\checkmark	\checkmark^3
\mathcal{L}_{PC}^{K}	\checkmark	\checkmark	\checkmark	X^5	\mathbf{X}^2	\checkmark	\checkmark	\checkmark
$\mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$	\mathbf{X}^{6}	?	?	X^5	\mathbf{X}^2	?	?	?

- Ghilardi, 1995]
- 2 [Ghilardi and Zawadowski, 1995]
- 3 [Wolter, F., 1998]
- (D'Agostino and Lenzi, 2005)
- [Bílková, 2007]
- **(**Studer, 2009]
- Pattinson, 2013]

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Future work				

- A practical approach for computing forgetting;
 - Identify a tractable form (DNF counterpart of modal logics);
 - Resolution methods: [Herzig and Mengin, 2008].

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Future work				

- A practical approach for computing forgetting;
 - Identify a tractable form (DNF counterpart of modal logics);
 - Resolution methods: [Herzig and Mengin, 2008].
- 2 More general cases of common knowledge: any φ appearing in $\mathbf{C}\varphi$ can be in $\mathcal{L}_n^{\mathbf{K}}$;

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Future wor	k			

- A practical approach for computing forgetting;
 - Identify a tractable form (DNF counterpart of modal logics);
 - Resolution methods: [Herzig and Mengin, 2008].
- 2 More general cases of common knowledge: any φ appearing in $\mathbf{C}\varphi$ can be in $\mathcal{L}_n^{\mathbf{K}}$;
- 3 Distributed knowledge: the sum of the knowledge in a group
 - K_D, D_D and T_D: \checkmark ;
 - $\bullet~$ K45_D, KD45_D and S5_D: ?

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Future wor	k			

- A practical approach for computing forgetting;
 - Identify a tractable form (DNF counterpart of modal logics);
 - Resolution methods: [Herzig and Mengin, 2008].
- 2 More general cases of common knowledge: any φ appearing in $\mathbf{C}\varphi$ can be in $\mathcal{L}_n^{\mathbf{K}}$;
- 3 Distributed knowledge: the sum of the knowledge in a group
 - K_D, D_D and T_D: \checkmark ;
 - $\bullet~$ K45_D, KD45_D and S5_D: ?
- - M: \checkmark [Santocanale and Venema, 2010];
 - M extended by classical axioms: ?.

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Future wor	k			

- A practical approach for computing forgetting;
 - Identify a tractable form (DNF counterpart of modal logics);
 - Resolution methods: [Herzig and Mengin, 2008].
- 2 More general cases of common knowledge: any φ appearing in $\mathbf{C}\varphi$ can be in $\mathcal{L}_n^{\mathbf{K}}$;
- 3 Distributed knowledge: the sum of the knowledge in a group
 - K_D, D_D and T_D: \checkmark ;
 - $\bullet~$ K45_D, KD45_D and S5_D: ?
- **④** Monotone Modal Logic: $\mathbf{K}_i(p \land q) \rightarrow \mathbf{K}_i p$
 - M: ✓ [Santocanale and Venema, 2010];
 - M extended by classical axioms: ?.
- O Progression and diagnose in multi-agent settings.
 - Progression in the Situation Calculus: [Fang, et al., 2015];
 - Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Thank you!

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

22/ 32

⊸ ≣ ≯

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Outline				

- 2 Preliminaries
- 3 Forgetting
- 4 Conclusions and future work

Liangda ${\rm Fang}^{1,3},$ Yongmei ${\rm Liu}^1$ and Hans van Ditmarsch^2

⊸ ≣ ≯

/⊒ ▶ < ≣ ▶

Introduction Preliminaries Forgetting Conclusions and future work

Proof

Model-theoretic definition of forgetting

Definition

Consider the context of a modal system L. Let $\varphi \in \mathcal{L}_{\mathbf{C}}^{\mathbf{K}}$. We call ψ is the result of forgetting p from φ , if the following conditions hold:

- Forth: for any model (M, s) of φ , if (M, s') is a model s.t. $(M, s) \underbrace{\leftrightarrow}_p(M', s')$, then $M', s' \models \psi$; (Easy: by induction)
- Back: for any model (M, 's') of ψ , there exists a model (M, s) s.t. $M, s \models \varphi$ and $(M, s) \leftrightarrow_p (M', s')$. (Very difficult!)

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

Introduction	Preliminaries	Forgetting	Conclusions and future work	Proof
Proof of ba				

- $(M^\prime,s^\prime):$ an L-model of $\delta^p;$
- Construct (M,s) s.t.
 - 0 (M,s) is an L-model;

$$M, s \models \varphi;$$

$$(M,s) \underline{\leftrightarrow}_p(M',s').$$

- $\delta \in E_0$: • Let (M, s) be the copy (M', s').
 - $\textbf{O} Modify the valuation on s s.t. $V'(s') \models \delta$. }$
- $\delta \in E_{k+1}$: $\delta = \theta \land \bigwedge_{i \in \mathcal{A}} \nabla_i \Phi_i$. By induction?

K_n and D_n : by induction

Figure: Illustration for the proof of K_n and D_n cases

Liangda Fang 1,3 , Yongmei Liu 1 and Hans van Ditmarsch 2

イロト イヨト イヨト イヨト

T_n: add reflexive edge

Figure: Illustration for the proof of T_n case

・ロト ・回ト ・ヨト

⊸ ≣⇒

Figure: Illustration for the proof of $K45_n$ and $KD45_n$ cases

Liangda Fang^{1,3}, Yongmei Liu¹ and Hans van Ditmarsch²

<ロ> <同> <同> < 同> < 同> < 同><<

Figure: Illustration for the proof of $K45_n$ and $KD45_n$ cases

・ロン ・団 と ・ 国 と ・ 国 と

Figure: Illustration for the proof of $S5_n$ case

・ロト ・回ト ・ヨト

Figure: Illustration for the proof of $S5_n$ case

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Figure: Illustration for the proof of KPC basic case

< ロ > < 同 > < 臣

