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Introduction

P: a finite set of propositions;

p ∈ P;

ϕ: the original formula;

ψ: a result of forgetting p in ϕ, i.e., the strongest
consequence of ϕ without p:

1 ψ does not contain p;

2 For any query η which does not contain p, ϕ |= η iff ψ |= η.

ψ: the uniform interpolant of φ on P \ {p}.

How to compute ψ?
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A brute-force approach to propositional logic

1 Transform ϕ into an equivalent principal DNF
∨
t∈Φ t;

2 Obtain tp by eliminating any occurrence of p or ¬p;

3
∨
t∈Φ t

p is a result of forgetting p in ϕ.

Example

ϕ = (p ∧ q) ∨ (¬p ∧ ¬r);

ϕ ≡ (p∧ q∧ r)∨ (p∧ q∧¬r)∨ (¬p∧ q∧¬r)∨ (¬p∧¬q∧¬r);

ψ = (q ∧ r) ∨ (q ∧ ¬r) ∨ (¬q ∧ ¬r).

How about multi-agent modal logics?

Modal logic: propositional logic + Ki operators;

Kiϕ: agent i knows ϕ.
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Modal language: LK
C

Definition (Syntax of LK
C)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ,

where p ∈ P, i ∈ A, and ϕ ∈ LKC .

Definition (Two sublanguages)

1 LKn : LKC without C operator;

2 LKPC: LKC with propositional common knowledge, i.e., any ϕ
appearing in Cϕ must be propositional.
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Kripke models

Definition (Kripke models)

A Kripke model is a tuple 〈S,R, V 〉 where

S: a non-empty set of states,

R: for each i ∈ A, Ri ⊆ S × S is a relation on states.

V : S → 2P is a function assigning to each proposition in a
subset of states.

A pair (M, s) is called a pointed model.

L K D T K4 S4 K45 KD45 S5

Serial X X X X X
Reflexive X X X
Transitive X X X X X
Euclidean X X X
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Cover modalites

Definition (Cover modalities)

1 ∇iΦ = Ki(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ K̂iϕ;

2 ∇Φ = C(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ Ĉϕ.

where K̂i
.
= ¬Ki¬ and Ĉ

.
= ¬C¬.

We can use ∇i (resp. ∇) modality instead of Ki (resp. C)
modality.
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Canonical formulas

Definition (Canonical formulas)

Let P ⊆ P be finite. We inductively define the set EPk as follows:

EP0 = {
∧
p∈X p ∧

∧
p∈P\X ¬p | X ⊆ P};

EPk+1 = {δ0 ∧
∧
i∈A∇iΦi | δ0 ∈ EP0 and Φi ⊆ EPk }.

δk ∈ Ek:

completely characterizes a Kripke model up to depth k;

a minterm in modal logics.
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Canonical formulas

Figure: Kripke model

1 p ∧ q;

2 p ∧ q ∧∇i{p ∧ ¬q,¬p ∧ q};
3 p ∧ q∧
∇i{p ∧ ¬q ∧∇i{p ∧ q, p ∧ ¬q}∧
¬p ∧ q∧∇i{¬p ∧ q,¬p ∧ ¬q}}

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 10/ 32



Introduction Preliminaries Forgetting Conclusions and future work Proof

Canonical formulas

Proposition (Moss, 2007)

Any formula in LKn can be equivalently transformed into a
disjunction of satisfiable canonical formulas.
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Computation of forgetting

1 Transform ϕ to a disjunction of satisfiable canonical formulas∨
δ∈Φ δ;

2 Obtain δp by eliminating any occurrence of p or ¬p;

3
∨
δ∈Φ δ

p is a result of forgetting p in ϕ.

Example

ϕ = K̂ip ∧ K̂i¬p;

ϕ ≡ δ1 ∨ δ2;

δ1 = p ∧∇i{p,¬p};
δ2 = ¬p ∧∇i{p,¬p};
δp1 ∨ δ

p
2 ≡ > ∧∇i{>} ≡ K̂i>.
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Main theorem

Theorem

Let L be Kn, Dn, Tn, K45n, KD45n or S5n.
Let δ be a canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n are closed under forgetting.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 14/ 32



Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Theorem

Let L be Kn, Dn, Tn, K45n, KD45n or S5n.
Let δ be a canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n are closed under forgetting.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 14/ 32



Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Definition (Uniform interpolation)

A logic L has uniform interpolation: In the logic L, for any formula
ϕ and any proposition p, there is a formula ψ that is a uniform
interpolant of ϕ on P \ p.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n have uniform interpolation.
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Common knowledge case

Negative result: KC is not closed under forgetting. [Studer,
2009]

We consider the propositional common knowledge case, i.e.,
LKPC where any ϕ appearing in Cϕ must be propositional.
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Pc-canonical formulas

Definition (Pc-canonical formulas)

Let P ⊆ P be finite. We inductively define the set CPk as follows:

CP0 = {θ ∧∇ΦA | θ ∈ EP0 and ΦA ⊆ EP0 };
CPk+1 = {θ ∧ (

∧
i∈A∇iΦi) ∧∇ΦA | θ ∈ EP0 , Φi ⊆

CPk and ΦA ⊆ EP0 }.

Proposition

Any formula in LKPC can be equivalently transformed into a
disjunction of satisfiable pc-canonical formulas.
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Main theorem 2

Theorem

Let L be KC, DC, TC, K45C, KD45C or S5C.
Let δ be a pc-canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

KPC, DPC, TPC, K45PC, KD45PC and S5PC are closed under
forgetting, and have uniform interpolation.
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Conclusions

Prove that Kn, Dn, Tn, K45n, KD45n and S5n are closed
under forgetting.

Extend the above results to propositional common knowledge
case.
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Current Results

L K D T K4 S4 K45 KD45 S5

LK1 X1 X7 X5 75 72 X X X3

LKn X4 X7 X3,5 75 72 X X X3

LKPC X X X 75 72 X X X
LKC 76 ? ? 75 72 ? ? ?

1 [Ghilardi, 1995]

2 [Ghilardi and Zawadowski, 1995]

3 [Wolter, F., 1998]

4 [D’Agostino and Lenzi, 2005]

5 [B́ılková, 2007]

6 [Studer, 2009]

7 [Pattinson, 2013]
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Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].
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Thank you!
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Model-theoretic definition of forgetting

Definition

Consider the context of a modal system L. Let ϕ ∈ LK
C . We call ψ is the

result of forgetting p from ϕ, if the following conditions hold:

Forth: for any model (M, s) of ϕ, if (M,′ s′) is a model s.t.
(M, s)↔p(M ′, s′), then M ′, s′ |= ψ; (Easy: by induction)

Back: for any model (M,′ s′) of ψ, there exists a model (M, s) s.t.
M, s |= ϕ and (M, s)↔p(M ′, s′). (Very difficult!)

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 24/ 32
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Proof of back condition

(M ′, s′): an L-model of δp;

Construct (M, s) s.t.
1 (M, s) is an L-model;

2 M, s |= ϕ;

3 (M, s)↔p(M ′, s′).

δ ∈ E0:
1 Let (M, s) be the copy (M ′, s′).

2 Modify the valuation on s s.t. V ′(s′) |= δ.

δ ∈ Ek+1: δ = θ ∧
∧
i∈A∇iΦi. By induction?

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 25/ 32



Introduction Preliminaries Forgetting Conclusions and future work Proof

Kn and Dn: by induction

Figure: Illustration for the proof of Kn and Dn cases
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Tn: add reflexive edge

Figure: Illustration for the proof of Tn case
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K45n and KD45n: multi-pointed models

Figure: Illustration for the proof of K45n and KD45n cases
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K45n and KD45n: multi-pointed models

Figure: Illustration for the proof of K45n and KD45n cases
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S5n: add reflexive and symmetric edges

Figure: Illustration for the proof of S5n case

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 30/ 32



Introduction Preliminaries Forgetting Conclusions and future work Proof

S5n: add reflexive and symmetric edges

Figure: Illustration for the proof of S5n case
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Extension to LK
PC: split a world into several copies

Figure: Illustration for the proof of KPC basic case
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