
Introduction Preliminaries Forgetting Conclusions and future work Proof

Forgetting and Uniform Interpolation in
Multi-Agent Modal Logics

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2

1Dept. of Computer Science, Sun Yat-sen University, China
2LORIA, CNRS – Université de Lorraine, France

3Dept. of Computer Science, Jinan University, China

Mar 24, 2018

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 1/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Introduction

P: a finite set of propositions;

p ∈ P;

ϕ: the original formula;

ψ: a result of forgetting p in ϕ, i.e., the strongest
consequence of ϕ without p:

1 ψ does not contain p;

2 For any query η which does not contain p, ϕ |= η iff ψ |= η.

ψ: the uniform interpolant of φ on P \ {p}.

How to compute ψ?

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 2/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Introduction

P: a finite set of propositions;

p ∈ P;

ϕ: the original formula;

ψ: a result of forgetting p in ϕ, i.e., the strongest
consequence of ϕ without p:

1 ψ does not contain p;

2 For any query η which does not contain p, ϕ |= η iff ψ |= η.

ψ: the uniform interpolant of φ on P \ {p}.

How to compute ψ?

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 2/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Introduction

P: a finite set of propositions;

p ∈ P;

ϕ: the original formula;

ψ: a result of forgetting p in ϕ, i.e., the strongest
consequence of ϕ without p:

1 ψ does not contain p;

2 For any query η which does not contain p, ϕ |= η iff ψ |= η.

ψ: the uniform interpolant of φ on P \ {p}.

How to compute ψ?

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 2/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

A brute-force approach to propositional logic

1 Transform ϕ into an equivalent principal DNF
∨
t∈Φ t;

2 Obtain tp by eliminating any occurrence of p or ¬p;

3
∨
t∈Φ t

p is a result of forgetting p in ϕ.

Example

ϕ = (p ∧ q) ∨ (¬p ∧ ¬r);

ϕ ≡ (p∧ q∧ r)∨ (p∧ q∧¬r)∨ (¬p∧ q∧¬r)∨ (¬p∧¬q∧¬r);

ψ = (q ∧ r) ∨ (q ∧ ¬r) ∨ (¬q ∧ ¬r).

How about multi-agent modal logics?

Modal logic: propositional logic + Ki operators;

Kiϕ: agent i knows ϕ.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 3/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

A brute-force approach to propositional logic

1 Transform ϕ into an equivalent principal DNF
∨
t∈Φ t;

2 Obtain tp by eliminating any occurrence of p or ¬p;

3
∨
t∈Φ t

p is a result of forgetting p in ϕ.

Example

ϕ = (p ∧ q) ∨ (¬p ∧ ¬r);

ϕ ≡ (p∧ q∧ r)∨ (p∧ q∧¬r)∨ (¬p∧ q∧¬r)∨ (¬p∧¬q∧¬r);

ψ = (q ∧ r) ∨ (q ∧ ¬r) ∨ (¬q ∧ ¬r).

How about multi-agent modal logics?

Modal logic: propositional logic + Ki operators;

Kiϕ: agent i knows ϕ.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 3/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

A brute-force approach to propositional logic

1 Transform ϕ into an equivalent principal DNF
∨
t∈Φ t;

2 Obtain tp by eliminating any occurrence of p or ¬p;

3
∨
t∈Φ t

p is a result of forgetting p in ϕ.

Example

ϕ = (p ∧ q) ∨ (¬p ∧ ¬r);

ϕ ≡ (p∧ q∧ r)∨ (p∧ q∧¬r)∨ (¬p∧ q∧¬r)∨ (¬p∧¬q∧¬r);

ψ = (q ∧ r) ∨ (q ∧ ¬r) ∨ (¬q ∧ ¬r).

How about multi-agent modal logics?

Modal logic: propositional logic + Ki operators;

Kiϕ: agent i knows ϕ.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 3/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Outline

1 Introduction

2 Preliminaries

3 Forgetting

4 Conclusions and future work

5 Proof

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 4/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Outline

1 Introduction

2 Preliminaries

3 Forgetting

4 Conclusions and future work

5 Proof

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 5/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Modal language: LK
C

Definition (Syntax of LK
C)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ,

where p ∈ P, i ∈ A, and ϕ ∈ LKC .

Definition (Two sublanguages)

1 LKn : LKC without C operator;

2 LKPC: LKC with propositional common knowledge, i.e., any ϕ
appearing in Cϕ must be propositional.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 6/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Modal language: LK
C

Definition (Syntax of LK
C)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Cϕ,

where p ∈ P, i ∈ A, and ϕ ∈ LKC .

Definition (Two sublanguages)

1 LKn : LKC without C operator;

2 LKPC: LKC with propositional common knowledge, i.e., any ϕ
appearing in Cϕ must be propositional.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 6/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Kripke models

Definition (Kripke models)

A Kripke model is a tuple 〈S,R, V 〉 where

S: a non-empty set of states,

R: for each i ∈ A, Ri ⊆ S × S is a relation on states.

V : S → 2P is a function assigning to each proposition in a
subset of states.

A pair (M, s) is called a pointed model.

L K D T K4 S4 K45 KD45 S5

Serial X X X X X
Reflexive X X X
Transitive X X X X X
Euclidean X X X

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 7/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Kripke models

Definition (Kripke models)

A Kripke model is a tuple 〈S,R, V 〉 where

S: a non-empty set of states,

R: for each i ∈ A, Ri ⊆ S × S is a relation on states.

V : S → 2P is a function assigning to each proposition in a
subset of states.

A pair (M, s) is called a pointed model.

L K D T K4 S4 K45 KD45 S5

Serial X X X X X
Reflexive X X X
Transitive X X X X X
Euclidean X X X

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 7/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Cover modalites

Definition (Cover modalities)

1 ∇iΦ = Ki(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ K̂iϕ;

2 ∇Φ = C(
∨
ϕ∈Φ ϕ) ∧

∧
ϕ∈Φ Ĉϕ.

where K̂i
.
= ¬Ki¬ and Ĉ

.
= ¬C¬.

We can use ∇i (resp. ∇) modality instead of Ki (resp. C)
modality.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 8/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Canonical formulas

Definition (Canonical formulas)

Let P ⊆ P be finite. We inductively define the set EPk as follows:

EP0 = {
∧
p∈X p ∧

∧
p∈P\X ¬p | X ⊆ P};

EPk+1 = {δ0 ∧
∧
i∈A∇iΦi | δ0 ∈ EP0 and Φi ⊆ EPk }.

δk ∈ Ek:

completely characterizes a Kripke model up to depth k;

a minterm in modal logics.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 9/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Canonical formulas

Figure: Kripke model

1 p ∧ q;

2 p ∧ q ∧∇i{p ∧ ¬q,¬p ∧ q};
3 p ∧ q∧
∇i{p ∧ ¬q ∧∇i{p ∧ q, p ∧ ¬q}∧
¬p ∧ q∧∇i{¬p ∧ q,¬p ∧ ¬q}}

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 10/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Canonical formulas

Proposition (Moss, 2007)

Any formula in LKn can be equivalently transformed into a
disjunction of satisfiable canonical formulas.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 11/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Outline

1 Introduction

2 Preliminaries

3 Forgetting

4 Conclusions and future work

5 Proof

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 12/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Computation of forgetting

1 Transform ϕ to a disjunction of satisfiable canonical formulas∨
δ∈Φ δ;

2 Obtain δp by eliminating any occurrence of p or ¬p;

3
∨
δ∈Φ δ

p is a result of forgetting p in ϕ.

Example

ϕ = K̂ip ∧ K̂i¬p;

ϕ ≡ δ1 ∨ δ2;

δ1 = p ∧∇i{p,¬p};
δ2 = ¬p ∧∇i{p,¬p};
δp1 ∨ δ

p
2 ≡ > ∧∇i{>} ≡ K̂i>.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 13/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Computation of forgetting

1 Transform ϕ to a disjunction of satisfiable canonical formulas∨
δ∈Φ δ;

2 Obtain δp by eliminating any occurrence of p or ¬p;

3
∨
δ∈Φ δ

p is a result of forgetting p in ϕ.

Example

ϕ = K̂ip ∧ K̂i¬p;

ϕ ≡ δ1 ∨ δ2;

δ1 = p ∧∇i{p,¬p};
δ2 = ¬p ∧∇i{p,¬p};
δp1 ∨ δ

p
2 ≡ > ∧∇i{>} ≡ K̂i>.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 13/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Theorem

Let L be Kn, Dn, Tn, K45n, KD45n or S5n.
Let δ be a canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n are closed under forgetting.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 14/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Theorem

Let L be Kn, Dn, Tn, K45n, KD45n or S5n.
Let δ be a canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n are closed under forgetting.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 14/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Definition (Uniform interpolation)

A logic L has uniform interpolation: In the logic L, for any formula
ϕ and any proposition p, there is a formula ψ that is a uniform
interpolant of ϕ on P \ p.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n have uniform interpolation.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 15/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem

Definition (Uniform interpolation)

A logic L has uniform interpolation: In the logic L, for any formula
ϕ and any proposition p, there is a formula ψ that is a uniform
interpolant of ϕ on P \ p.

Corollary

Kn, Dn, Tn, K45n, KD45n and S5n have uniform interpolation.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 15/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Common knowledge case

Negative result: KC is not closed under forgetting. [Studer,
2009]

We consider the propositional common knowledge case, i.e.,
LKPC where any ϕ appearing in Cϕ must be propositional.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 16/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let P ⊆ P be finite. We inductively define the set CPk as follows:

CP0 = {θ ∧∇ΦA | θ ∈ EP0 and ΦA ⊆ EP0 };
CPk+1 = {θ ∧ (

∧
i∈A∇iΦi) ∧∇ΦA | θ ∈ EP0 , Φi ⊆

CPk and ΦA ⊆ EP0 }.

Proposition

Any formula in LKPC can be equivalently transformed into a
disjunction of satisfiable pc-canonical formulas.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 17/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Pc-canonical formulas

Definition (Pc-canonical formulas)

Let P ⊆ P be finite. We inductively define the set CPk as follows:

CP0 = {θ ∧∇ΦA | θ ∈ EP0 and ΦA ⊆ EP0 };
CPk+1 = {θ ∧ (

∧
i∈A∇iΦi) ∧∇ΦA | θ ∈ EP0 , Φi ⊆

CPk and ΦA ⊆ EP0 }.

Proposition

Any formula in LKPC can be equivalently transformed into a
disjunction of satisfiable pc-canonical formulas.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 17/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Main theorem 2

Theorem

Let L be KC, DC, TC, K45C, KD45C or S5C.
Let δ be a pc-canonical formula satisfiable in L.
Then, δp is a result of forgetting p in δ.

Corollary

KPC, DPC, TPC, K45PC, KD45PC and S5PC are closed under
forgetting, and have uniform interpolation.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 18/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Conclusions

Prove that Kn, Dn, Tn, K45n, KD45n and S5n are closed
under forgetting.

Extend the above results to propositional common knowledge
case.

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 19/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Current Results

L K D T K4 S4 K45 KD45 S5

LK1 X1 X7 X5 75 72 X X X3

LKn X4 X7 X3,5 75 72 X X X3

LKPC X X X 75 72 X X X
LKC 76 ? ? 75 72 ? ? ?

1 [Ghilardi, 1995]

2 [Ghilardi and Zawadowski, 1995]

3 [Wolter, F., 1998]

4 [D’Agostino and Lenzi, 2005]

5 [B́ılková, 2007]

6 [Studer, 2009]

7 [Pattinson, 2013]

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 20/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 21/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 21/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 21/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 21/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Future work

1 A practical approach for computing forgetting;

Identify a tractable form (DNF counterpart of modal logics);

Resolution methods: [Herzig and Mengin, 2008].

2 More general cases of common knowledge: any ϕ appearing in Cϕ
can be in LK

n ;

3 Distributed knowledge: the sum of the knowledge in a group

KD, DD and TD: X;

K45D, KD45D and S5D: ?

4 Monotone Modal Logic: Ki(p ∧ q)→ Kip

M: X [Santocanale and Venema, 2010];

M extended by classical axioms: ?.

5 Progression and diagnose in multi-agent settings.

Progression in the Situation Calculus: [Fang, et al., 2015];
Diagnose in propositional logic: [Lin, 2001] and [Lang, 2008].

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 21/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Thank you!

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 22/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Outline

1 Introduction

2 Preliminaries

3 Forgetting

4 Conclusions and future work

5 Proof

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 23/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Model-theoretic definition of forgetting

Definition

Consider the context of a modal system L. Let ϕ ∈ LK
C . We call ψ is the

result of forgetting p from ϕ, if the following conditions hold:

Forth: for any model (M, s) of ϕ, if (M,′ s′) is a model s.t.
(M, s)↔p(M ′, s′), then M ′, s′ |= ψ; (Easy: by induction)

Back: for any model (M,′ s′) of ψ, there exists a model (M, s) s.t.
M, s |= ϕ and (M, s)↔p(M ′, s′). (Very difficult!)

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 24/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Proof of back condition

(M ′, s′): an L-model of δp;

Construct (M, s) s.t.
1 (M, s) is an L-model;

2 M, s |= ϕ;

3 (M, s)↔p(M ′, s′).

δ ∈ E0:
1 Let (M, s) be the copy (M ′, s′).

2 Modify the valuation on s s.t. V ′(s′) |= δ.

δ ∈ Ek+1: δ = θ ∧
∧
i∈A∇iΦi. By induction?

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 25/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Kn and Dn: by induction

Figure: Illustration for the proof of Kn and Dn cases

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 26/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Tn: add reflexive edge

Figure: Illustration for the proof of Tn case

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 27/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

K45n and KD45n: multi-pointed models

Figure: Illustration for the proof of K45n and KD45n cases

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 28/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

K45n and KD45n: multi-pointed models

Figure: Illustration for the proof of K45n and KD45n cases

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 29/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

S5n: add reflexive and symmetric edges

Figure: Illustration for the proof of S5n case

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 30/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

S5n: add reflexive and symmetric edges

Figure: Illustration for the proof of S5n case

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 31/ 32

Introduction Preliminaries Forgetting Conclusions and future work Proof

Extension to LK
PC: split a world into several copies

Figure: Illustration for the proof of KPC basic case

Liangda Fang1,3, Yongmei Liu1 and Hans van Ditmarsch2 32/ 32

	Introduction
	Preliminaries
	Forgetting
	Conclusions and future work
	Proof

