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From Aristotle...

necessity

possibility

contingency

Three kinds of propositions: necessary proposition, impossible
proposition, contingent proposition.



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

From Aristotle...

necessity

possibility

contingency

Three kinds of propositions: necessary proposition, impossible
proposition, contingent proposition.



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

From Aristotle...

necessity

possibility

contingency

Three kinds of propositions: necessary proposition, impossible
proposition, contingent proposition.



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

From Aristotle...

necessity

possibility

contingency

Three kinds of propositions: necessary proposition, impossible
proposition, contingent proposition.



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

From Aristotle...

necessity

possibility

contingency

Three kinds of propositions: necessary proposition, impossible
proposition, contingent proposition.



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

Contingency: an example

Will there be necessarily sea battles tomorrow? No!

Will there be necessarily no sea battles tomorrow? No!

Why is it the case?

The proposition “there will be sea battles tomorrow” (P) is
contingent, i.e., it is possible that P and it is possible that
not P.
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Various readings of contingency

Propositional Logic: neither tautology nor contradiction

First-order Logic: neither validity nor unsatisfiability

Modal Logic: possible but not necessary

Deontic Logic: permitted but not obligatory, i.e. indifference

Epistemic Logic: neither know nor know-not, i.e. ignorance

Doxastic Logic: neither believe nor believe-not, i.e.
agnosticism/undecided

Provability Logic: undecidable

Spatial Logic: topological border

· · ·
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Axiomatizations: 1966-2015

Frames Known results

K [Humberstone, 1995, Kuhn, 1995, van der Hoek and Lomuscio, 2004]
D [Humberstone, 1995]
T [Montgomery and Routley, 1966]
4 [Kuhn, 1995]
5 [Zolin, 1999]
B [Fan et al., 2014, Fan et al., 2015]
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Language

L(∆) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ∆ϕ

∆ϕ: it is non-contingent that ϕ.

∇ϕ =df ¬∆ϕ: it is contingent that ϕ.
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2. Kripke semantics and Axiomatizations
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Kripke Semantics

M, s � ∆ϕ iff ∀t1, t2 ∈ R(s) : (M, t1 � ϕ iff M, t2 � ϕ)

M, s � ∆ϕ iff ∀t1, t2 ∈ R(s) :M, t1 � ϕ implies M, t2 � ϕ.
M, s � ∆ϕ iff ∀t ∈ R(s) :M, t � ϕ, or, ∀t ∈ R(s) :M, t 2 ϕ.

p ¬p

s : ∆p s : ∆p

OO

s : ∆p

OO p

s : ¬∆p

::

// ¬p
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Non-normality

Even on S5-models,

2 ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

M : s : ¬p,¬q
��

// ¬p, q
��oo

M, s � ∆(p → q) ∧∆p, but M, s 2 ∆q.
Even non-monotonic: 2 ∆p → ∆(p ∨ q).
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Expressivity [Fan et al., 2015]

Proposition

L(∆) is less expressive than standard modal logic on K, D, B, 4, 5.

Proposition

L(∆) is equally expressive as standard modal logic on T .
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Frame definability [Zolin, 1999, Fan et al., 2015]

Proposition

The frame properties of seriality, reflexivity, symmetry, transitivity
and Euclidicity are not definable in L(∆).

Sketch.

F1 : s1
// t // u F2 : s2

��
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A summary

Non-normal

Less expressive

Cannot define many usual frame properties

These make the axiomatizations of L(∆) non-trivial
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Montgomery and Routley’s reflexive logics

T∆

TAUT all instances of tautologies
∆Equ ∆ϕ↔ ∆¬ϕ
∆T ϕ→ (∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ))

MP From ϕ and ϕ→ ψ infer ψ
NEC∆ From ϕ infer ∆ϕ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

S4∆ = T∆ + (∆ϕ→ ∆∆ϕ)
S5∆ = T∆ + ∆∆ϕ
NB: L(∆) is equally expressive as L(2) on T , since

∆ϕ
def
= 2ϕ ∨2¬ϕ and 2ϕ

def
= ∆ϕ ∧ ϕ.

But ∆T cannot be obtained from 2ϕ→ ϕ via translation!
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A question

Q: how to axiomatize L(∆) over other classes of frames?

‘Simulate’ the canonical relation in standard modal logic.
xRcy iff λ(x) ⊆ y , where λ(x) = {ϕ | 2ϕ ∈ x}.

How?
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Humberstone’s logic

λ(x) = {ϕ | ∆ϕ ∈ x and for all ψ,` ϕ→ ψ implies ∆ψ ∈ x}.

NC:

(∆¬) ∆¬ϕ→ ∆ϕ

(NCR)k
s1(ϕ1, · · · , ϕk)→ ψ1 · · · s2k (ϕ1, · · · , ϕk)→ ψ2k

(∆ϕ1 ∧ · · · ∧∆ϕk)→ (∆ψ1 ∨ · · · ∨∆ψ2k )

k ∈ N, infinitary system

Question: finitely axiomatizable?
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Kuhn’s logics

λ(x) = {ϕ | ∆(ϕ ∨ ψ) ∈ x for all ψ}
K∆ = minimal non-contingency logic

PL All substitution instances of tautologies
A1 ∆¬ϕ→ ∆ϕ
A2 ∆ϕ ∧∇(ϕ ∧ ψ)→ ∇ψ
A3 ∆ϕ ∧∇(ϕ ∨ ψ)→ ∆(¬ϕ ∨ χ)
R∆ If ` ϕ then ` ∆ϕ
RE If ` ϕ↔ ψ then ` ∆ϕ↔ ∆ψ
MP If ` ϕ and ` ϕ→ ψ then ` ψ.

K4∆ = K∆ + ∆ϕ→ ∆(∆ϕ ∨ ψ) = transitive
non-contingency logic.
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Zolin’s logics

](x) = {ϕ | �ϕ ⊆ x}, where �ϕ = {∆(ψ → ϕ) | ψ ∈ L(∆)}.
K∆

(A∆
>) All classical tautologies in L(∆)

(A∆
K ) ∆(ϕ↔ ψ)→ (∆ϕ↔ ∆ψ)

(A∆
¬ ) ∆ϕ↔ ∆¬ϕ

(A∆
∨ ) ∆ϕ→ [∆(ψ → ϕ) ∨∆(ϕ→ χ)]

(MP)

(NCR)
ϕ

∆ϕ

K4∆ = K∆ + ∆ϕ→ ∆(ψ → ∆ϕ)

K5∆ = K∆ + ¬∆ϕ→ ∆(ψ → ¬∆ϕ)

NB: ] is equal to Kuhn’s λ
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Limitations

Humberstone [Humberstone, 1995]:
λ(s) = {ϕ | ∆ϕ ∈ s and for all ψ,` ϕ→ ψ implies ∆ψ ∈ s}
is responsible for the infinitary axiomatization, and the
completeness proof requires König’s Lemma

Kuhn [Kuhn, 1995] and Zolin [Zolin, 1999]:

The necessity operator, defined by �ϕ =df

∧
ψ∈L(∆) ∆(ϕ∨ ψ),

is not really 2. E.g., ϕ→ �¬� ¬ϕ is not valid on the class of
symmetric frames [Zolin, 2001].

The canonical relations in [Kuhn, 1995, Zolin, 1999] at least do
not apply to the reflexive frames, a fortiori, they do not apply
to the symmetric frames [Humberstone, 2002a, page 118].
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Almost-definability-schema based logics

[Fan et al., 2014, Fan et al., 2015]

Almost-definability schema: Under a condition ∇ψ (viz.
¬∆ψ) for some ψ, 2 is definable with ∆

� ∇ψ → (2ϕ↔ ∆ϕ ∧∆(ψ → ϕ))

sRct iff there exists χ such that:

¬∆χ ∈ s, and
for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.

Standard modal logic: sRct iff for all ϕ, 2ϕ ∈ s implies ϕ ∈ t
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Axiomatization: the minimal logic

NCL:

TAUT all instances of tautologies
∆Con ∆(χ→ ϕ) ∧∆(¬χ→ ϕ)→ ∆ϕ
∆Dis ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ)
∆Equ ∆ϕ↔ ∆¬ϕ

MP From ϕ and ϕ→ ψ infer ψ
NEC∆ From ϕ infer ∆ϕ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

NB: NEC∆ is indispensable in NCL
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Axiomatization: extensions

Notation Axiom Schemas Systems

∆T ∆ϕ ∧ ∆(ϕ→ ψ) ∧ ϕ→ ∆ψ NCLT = NCL + ∆T

∆4 ∆ϕ→ ∆(∆ϕ ∨ ψ) NCL4 = NCL + ∆4

∆5 ¬∆ϕ→ ∆(¬∆ϕ ∨ ψ) NCL5 = NCL + ∆5

∆B ϕ→ ∆((∆ϕ ∧ ∆(ϕ→ ψ) ∧ ¬∆ψ) → χ) NCLB = NCL + ∆B

w∆4 ∆ϕ→ ∆∆ϕ NCLS4 = NCLT + w∆4
w∆5 ¬∆ϕ→ ∆¬∆ϕ NCLS5 = NCLT + w∆5

Completeness results w.r.t. corresponding classes of frames

Apply to multimodal cases, except for that of NCLB
∆T and ∆B can be obtained via almost-definability schema

∇¬ψ → (2¬ϕ→ ¬ϕ) (1)

⇐⇒ ∇¬ψ ∧2¬ϕ→ ¬ϕ (2)

⇐⇒ ∇¬ψ ∧∆¬ϕ ∧∆(¬ψ → ¬ϕ)→ ¬ϕ (3)

⇐⇒ ∆ϕ ∧∆(ϕ→ ψ) ∧ ϕ→ ∆ψ (4)
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Proof system for the symmetric frames

NCLB: (NB: no need of the rule (NEC∆):
ϕ

∆ϕ
)

TAUT all instances of tautologies
∆Con ∆(χ→ ϕ) ∧∆(¬χ→ ϕ)→ ∆ϕ
∆Dis ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ)
∆Equ ∆ϕ↔ ∆¬ϕ
∆B ϕ→ ∆((∆ϕ ∧∆(ϕ→ ψ) ∧ ¬∆ψ)→ χ)

MP From ϕ and ϕ→ ψ infer ψ
RE∆ From ϕ↔ ψ infer ∆ϕ↔ ∆ψ

Proposition

NCLB is sound with respect to the class of symmetric frames.
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Pseudo-Canonical Model

Definition (Pseudo-Canonical Model)

Define Mc = 〈Sc ,Rc ,V c〉 as follows:

Sc = {s | s is a maximal consistent set of NCLB}
For all s, t ∈ Sc , sRct iff there exists χ such that:

¬∆χ ∈ s, and
for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.

V c(p) = {s ∈ Sc | p ∈ s}.

Lemma (Pseudo-Truth Lemma)

For all ϕ ∈ L(∆) and s ∈ Sc , Mc , s � ϕ iff ϕ ∈ s.
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Rc is not symmetric

Proposition

For any s, t ∈ Sc , if sRct and ¬∆χ ∈ t for some χ, then tRcs.

s

��

=⇒ s

��
t // u t //

OO

u

sRct iff there exists χ such that:

¬∆χ ∈ s, and

for all ϕ, ∆ϕ ∧∆(χ→ ϕ) ∈ s implies ϕ ∈ t.
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Turn Mc into a symmetric model

s

��

=⇒ s

��
t t

OO
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Turn Mc into a symmetric model

s

��

=⇒ s

��
t t

OO

Split the world t:

s

��

u

��

=⇒ s

��

u

��

=⇒ s

��

u

��
t (s, t) (u, t) (s, t)

OO

(u, t)

OO
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Canonical Model of NCLB

Definition

The canonical model M+ of NCLB is a tuple 〈S+,R+, f ,V +〉 where:

S+ = D̄ ∪ {(s, t) | t ∈ D, sRct}

sR+t iff one of the following cases holds:

1 s, t ∈ D̄ and sRct,
2 s ∈ D̄ and t = (s, s ′) ∈ S+,
3 t ∈ D̄ and s = (t, t ′) ∈ S+.

f is a function assigning each state in S+ to a maximal consistent
set in Sc such that f (s) = s for s ∈ D̄, and f ((s, t)) = t for
(s, t) ∈ S+.

V +(p) = {s ∈ S+ | p ∈ f (s)}

where D = {t | t ∈ Sc , ∆χ ∈ t for all χ, and there exists an
s ∈ Sc such that sRct }, where Sc and Rc are defined as in
Definition 14, and D̄ = Sc\D.
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f acts like a surjective bounded morphism

Proposition

1 f is surjective.

2 s and f (s) satisfy the same propositional variables.

3 if s ∈ D̄ then sR+t implies f (s)Rc f (t).

4 if f (s)Rct then there exists u ∈ S+ such that f (u) = t and
sR+u.
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M+ is desired canonical model

Lemma

M+ is symmetric.

Proposition

M+ preserves the truth values of formulas w.r.t. f . That is:
for any s ∈ S+ and any ϕ ∈ L(∆), we have

M+, s � ϕ ⇐⇒ Mc , f (s) � ϕ.
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Completeness of NCLB

Theorem

NCLB is (sound and) strongly complete with respect to the class
of symmetric frames.
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Multimodal L(∆)

Language (i ∈ I, where I is finite)

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ∆iϕ | 2iϕ

2iϕ: ϕ is necessary for agent i
∆iϕ: ϕ is non-contingent for agent i , i.e., for i , ϕ is
necessarily true or ϕ is necessarily false.

Semantics

M, s � ∆iϕ ⇔ for any t1, t2 such that s →i t1, s →i t2 :
(M, t1 � ϕ⇔M, t2 � ϕ)

Multimodal L(∆) is not normal

Almost-definability

� ∇iψ → (2iϕ↔ ∆iϕ ∧∆i (ψ → ϕ))
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Proof system for the symmetric frames: Multimodal case

NCLBm

TAUT all instances of tautologies
∆Con ∆i (χ→ ϕ) ∧∆i (¬χ→ ϕ)→ ∆iϕ
∆Dis ∆iϕ→ ∆i (ϕ→ ψ) ∨∆i (¬ϕ→ χ)
∆Equ ∆iϕ↔ ∆i¬ϕ
∆B ϕ→ ∆i ((∆iϕ ∧∆i (ϕ→ ψ) ∧ ¬∆iψ)→ χ)

MP From ϕ and ϕ→ ψ infer ψ
RE∆ From ϕ↔ ψ infer ∆iϕ↔ ∆iψ

Proposition

NCLBm is sound with respect to the class of symmetric frames.
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Pseudo-Canonical Model: again

Definition (Pseudo-Canonical Model)

Define Mc = 〈Sc , {→c
i | i ∈ I},V c〉 as follows:

Sc = {s | s is a maximal consistent set of NCLBm}
For all s, t ∈ Sc , for all i ∈ I, s →c

i t iff there exists χ such
that

1 ¬∆iχ ∈ s, and
2 for all ϕ, ∆iϕ ∧∆i (χ→ ϕ) ∈ s implies ϕ ∈ t.

V c(p) = {s ∈ Sc | p ∈ s}.

Standard multi-modal logic: s →c
i t iff for all ϕ, 2iϕ ∈ s

implies ϕ ∈ t

Almost-definability: ¬∆iχ→ (2iϕ↔ ∆iϕ ∧∆i (χ→ ϕ))
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Pseudo-Truth Lemma: again

Lemma

For all ϕ ∈ L(∆) and s ∈ Sc , Mc , s � ϕ iff ϕ ∈ s.
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→c
i is not symmetric

Proposition

For any s, t ∈ Sc and any i ∈ I, if s →c
i t and t →c

i t ′ for some
t ′ ∈ Sc , then t →c

i s.

The canonical model for NCLB cannot be generalized into
NCLBm

The dead ends are relative to the agents

A dead end for agent j may be not a dead end for agent i

Need new strategy
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New Strategy: turn Mc into a symmetric model

Enumerate all of the agents in I as 1, 2, 3, · · · ,m. Starting from
M0 =Mc (we may as well assume that Mc has run out of Prop.
16), we construct the desired model (call it Mm) in m steps.

In each step we tackle the dead ends for that agent, by
replacing those dead ends with some new copies of themselves
such that each copy has only one incoming transition for that
agent and then adding the back arrows for the agent

while keeping all the arrows for the other agents in place, with
corresponding replacements for the dead ends. We have to
provide that

1 In each step, the accessibility relation for that agent is
symmetric,

2 The symmetry of the previous relation for a fixed agent is not
broken, which guarantee Mm to be symmetric

3 Each step preserves the truth values of formulas
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An example

s

1,2

��

1

��

s
2

�� 1xx

1

##
t u

2
oo Step 1

=⇒ (s, t)

88

(s, u)
2

oo

cc

(s, (s, t))
1,2 // soo

1
yy

1

��
Step 2
=⇒ ((s, u), (s, t))

99

// (s, u)
2
oo

OO
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Canonical model Mm of NCLBm

Definition

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

S0 = Sc

Sn = D̄n ∪ {(s, t) | t ∈ Dn and s →n−1
n t}, where

Dn = {t | t ∈ Sn−1, there is no t ′ ∈ Sn−1 such that t →n−1
n

t ′ and there exists an s ∈ Sn−1 such that s →n−1
n t},

D̄n = Sn−1\Dn
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Canonical model Mm of NCLBm

Definition (Cont’)

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

→0
n=→c

n

s →n
n t iff one of the following cases holds:

1 s, t ∈ D̄n and s →n−1
n t,

2 s ∈ D̄n and t = (s, s ′) ∈ Sn,

3 t ∈ D̄n and s = (t, t ′) ∈ Sn.

For i 6= n, s →n
i t iff one of the following cases holds:

1 s, t ∈ D̄n and s →n−1
i t,

2 s ∈ D̄n and t = (s ′′, s ′) ∈ Sn and s →n−1
i s ′,

3 t ∈ D̄n and s = (t ′′, t ′) ∈ Sn and t ′ →n−1
i t,

4 s = (w , v) ∈ Sn and t = (w ′, v ′) ∈ Sn and v →n−1
i v ′.
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Canonical model Mm of NCLBm

Definition (Cont’)

Define Mm = 〈Sm, {→m
i | i ∈ I}, f m,V m〉 by induction on n ≤ m:

f n+1 is a function from Sn+1 to Sn such that f n+1(s) = s for
s ∈ D̄n+1, and f n+1((s, t)) = t for (s, t) ∈ Sn+1

V 0(p) = {s ∈ Sc | p ∈ s} and
V n+1(p) = {s ∈ Sn+1 | f n+1(s) ∈ V n(p)}
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Properties of f n+1

Proposition (Preservation)

Given any s, t ∈ Sn+1. If f n+1(s)→n
i f n+1(t), then

1 If i 6= n + 1, then s →n+1
i t.

2 If i = n + 1, then for some t ′ ∈ Sn+1 such that s →n+1
i t ′ and

f n+1(t) = f n+1(t ′).

Proposition (No Miracle)

Given any s, t ∈ Sn+1.

1 If i 6= n + 1, then s →n+1
i t implies f n+1(s)→n

i f n+1(t).

2 If i = n + 1 and s ∈ D̄n+1, then s →n+1
i t implies

f n+1(s)→n
i f n+1(t).

For every n ∈ [0,m − 1], f n+1 is surjective!



Introduction Kripke semantics and Axiomatizations Neighborhood semantics and Axiomatizations

Mm is symmetric

Proposition

Mm is symmetric. That is, for all i ∈ [1,m], →m
i is symmetric:

1 For every n ∈ [1,m], →n
n is symmetric.

2 If →n
i is symmetric, then →n+1

i is also symmetric.
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Truth-preserving in each step

Proposition

For any n ∈ [0,m − 1], any s ∈ Sn+1, and any ϕ ∈ L(∆),

Mn+1, s � ϕ⇐⇒Mn, f n+1(s) � ϕ.
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Completeness of NCLBm

Define f = f 1 ◦ f 2 ◦ · · · ◦ f m.

f : Sm → S0 is surjective.

For any s ∈ Sm and any ϕ ∈ L(∆), we have

Mm, s � ϕ⇐⇒ ϕ ∈ f (s)

Theorem

NCLBm is strongly complete with respect to the class of
symmetric frames.
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3. Neighborhood semantics and Axiomatizations
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Neighborhood properties

M = 〈S ,N,V 〉 is a neighborhood model, if S is a nonempty set of
states, N : S → P(P(S)) is a neighborhood function, and V is a
valuation.

Definition (Neighborhood properties)

(n): N(s) contains the unit, if S ∈ N(s).
(i): N(s) is closed under intersections, if X ,Y ∈ N(s) implies
X ∩ Y ∈ N(s).
(s): N(s) is supplemented, or closed under supersets, if X ∈ N(s)
and X ⊆ Y ⊆ S implies Y ∈ N(s).
(c): N(s) is closed under complements, if X ∈ N(s) implies
S\X ∈ N(s).

A frame is called quasi-filter, if it possesses (i) and (s); a frame is
called filter, if it has also (n).
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Neighborhood semantics

[Fan and van Ditmarsch, 2015]

M, s � p ⇐⇒ s ∈ V (p)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � ∆ϕ ⇐⇒ ϕM ∈ N(s) or S\ϕM ∈ N(s)
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TAUT all instances of tautologies
∆Equ ∆ϕ↔ ∆¬ϕ
∆M ∆ϕ→ ∆(ϕ ∨ ψ) ∨∆(¬ϕ ∨ χ)
∆C ∆ϕ ∧∆ψ → ∆(ϕ ∧ ψ)
∆N ∆>

RE∆
ϕ↔ ψ

∆ϕ↔ ∆ψ

systems frame classes

E∆ = TAUT + ∆Equ + RE∆ all
M∆ = E∆ + ∆M (s)
(EC)∆ = E∆ + ∆C (i)&(c)
(EN)∆ = E∆ + ∆N (n)
R∆ = M∆ + ∆C quasi-filters
(EMN)∆ = M∆ + ∆N (s)&(n)
(ECN)∆ = (EC)∆ + ∆N (i)&(c)&(n)
K∆ = R∆ + ∆N filters
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Definition

Let Σ be a system excluding ∆M. A tuple Mc = 〈Sc ,Nc ,V c〉 is a
canonical neighborhood model for Σ, if

Sc = {s | s is a maximal consistent set for Σ},
Nc(s) = {|ϕ| | ∆ϕ ∈ s},
V c(p) = |p|.

Definition

Let Γ be a system including ∆M. A triple Mc = 〈Sc ,Nc ,V c〉 is a
canonical model for Γ, if

Sc = {s | s is a maximal consistent set for Γ},
Nc(s) = {|ϕ| | ∆(ϕ ∨ ψ) ∈ s for every ψ} (Inspired by Kuhn’s
function λ: λ(s) = {ϕ | ∀ψ,∆(ϕ ∨ ψ) ∈ s}.),

For each p ∈ P, V c(p) = |p|.
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R∆ // K∆

M∆

??

// (EMN)∆

??

(EC)∆

OO

// (ECN)∆

OO

E∆ //

??

OO

(EN)∆

??

OO

[Bakhtiari et al., 2017, p. 62] and [Bakhtiarinoodeh, 2017,
pp. 124–125] claimed: “This raises the questions of what the
axiomatizations are of monotone contingency logic and
regular contingency logic. · · · one cannot fill these gaps with
the axioms ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ) and
∆(ψ → ϕ) ∧∆(¬ψ → ϕ)→ ∆ϕ. So these questions remain
open.”
In M∆, ∆M by ∆ϕ→ ∆(ϕ→ ψ) ∨∆(¬ϕ→ χ). In R∆, ∆C
by ∆(ψ → ϕ) ∧∆(¬ψ → ϕ)→ ∆ϕ.
The claim was wrong, and the two open questions are
answered.
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Reflection: how does the function λ arise?

Kuhn’s λ is very important for the definition of canonical
relation and thus for the completeness proof in [Kuhn, 1995].

It is this function that helps find simple axiomatizations for
the minimal contingency logic and transitive contingency logic
under Kripke semantics, so to speak.

Despite its importance, the author did not say any intuitive
idea about λ. And this function was thought of as ‘ingenious’
creation by some other researchers, say
Humberstone [Humberstone, 2002b, p. 118] and Fan, Wang
and van Ditmarch [Fan et al., 2015, p. 101].
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Kuhn’s λ is equal to Humberstone’s λ

λH(s) = {ϕ | ∆ϕ ∈ s and ∀ψ such that ` ϕ→ ψ,∆ψ ∈ s}.
λK (s) = {ϕ | ∀ψ,∆(ϕ ∨ ψ) ∈ s}.

Proof.

λH(s) = {ϕ | ∀ψ such that ` ϕ→ ψ,∆ψ ∈ s}.
Given the rule RE∆, (1)⇐⇒ (2):
(1) For every ψ such that ` ϕ→ ψ, ∆ψ ∈ s.
(2) For every ψ, ∆(ϕ ∨ ψ) ∈ s.

Jie Fan. A sequence of neighborhood contingency logics. arXiv preprint

arXiv:1802.03516, under submission, 2018.
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Open questions

Kripke semantics: axiomatizations of L(∆) over B4-frames

Neighborhood semantics: proper extensions of K∆
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Thank you for your attention!
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