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Introduction

Question

How to prove in ZF (without AC) that for all non-zero natural
numbers n and all sets A, B, if nx A~ nx B, then Ax B?

History of this question

(Bernstein 1901) 2 x Ax~2x B— A~ B
o (Sierpinski 1922) A simpler proof of 2 x Ax~2x B— A~ B
¢ (Lindenbaum and Tarski 1926) Announcing the general case
e (Sierpinski 1947) 2 x Ax2xB— A< B
° (

(

Tarski 1949) nx A nx B— A< B

Doyle and Conway 1994) A new proof of
nxA<nxB—+A<B



Introduction

Question
How to prove in ZF (without AC) that for all non-zero natural
numbers nand all sets A, B, if n x A= nx B, then A~ B?

Where is the difficulty?

® |n the case where A or B is finite, we prove in ZF that
nx A~ nx B— A= B by invoking a bijection from A or B
onto a natural number.

® |n the case where A and B are infinite, we prove in ZFC that
nx A= nx B— A= B by invoking a bijection from A or B
onto an infinite (well-ordered) cardinal.

® Even in ZFC, it is difficult to define a bijection from A onto B
by using only a bijection from n x A onto n x B.



Preliminaries

Convention

Let @(Pla <o Pmy X0y - - - ’Xn) and T/J(Pla <o Pmy X0y - - - aXn7y) be
formulas in the language of set theory with no free variables other

than indicated. When we say that from xo, . .., x, such that
o(p1,- .., PmyX0,---,Xn), one can explicitly define a y such that
Y(p1y- -y PmyX0s - - - Xn, ¥), We mean the following:

There exists a class function G without free variables such
that if (p1, ..., Pm, X0, - - -y Xn), then (xo, ..., Xxp) is in the
domain of G and Y(p1,. .., PmsX0s -« Xny G(X0, - - -, Xn))-



Preliminaries

Examples

® From a surjection f: y — x and a well-ordering r of y, one can
explicitly define a well-ordering s of x.
There exists a class function G without free variables such
that if f is a surjection from y onto x and r well-orders y,
then G(f,r) is defined and is a well-ordering of x.

¢ (Cantor-Bernstein) From an injection f: x — y and an
injection g: y — x, one can explicitly define a bijection
h:x—y.
There exists a class function G without free variables such
that if f is an injection from x into y and g is an injection
from y into x, then G(f,g) is defined and is a bijection
from x onto y.
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Project
Restate all theorems of ZFC in this form!
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Project
Restate all theorems of ZFC in this form!

Further examples

® (Zermelo 1904) From a choice function on p(x), one can
explicitly define a well-ordering on x.

e (Faferman 1965) Even in ZFC, one cannot explicitly define a
well-ordering of R.

¢ (Jensen 1968) From a {-sequence (S, | @ < wi) and a ladder
system (C, | @ < w1), one can explicitly define a Souslin tree.
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Definition of cardinality in ZF

i min{« | a = x}, if x is well-orderable;
Xl =
{y |y~ xA\Vz~ x(rank(y) < rank(z))}, otherwise.

We shall use lower case German letters a, b, ¢, 0 for cardinals.



Preliminaries

Definition
® x|+ |yl = [xx {0} Uyx {1}

® x|yl = [xx ¥
o [YX = {f] f:x— y}



Preliminaries

Definition
® x < y means that there is an injection from x into y.

® x <* y means that there is a surjection from a subset of y
onto x.

® a < b means that there are sets x, y such that |x| = a,
lyl =06, and x< y.

® a <* b means that there are sets x, y such that |x| = a,
y
lyl = b, and x<g* y.

Fact
a<b—a<*b— 2020
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If ZF is consistent, we cannot prove in ZF that every infinite set
includes a denumerable subset, and we cannot even prove in ZF
that the power set of an infinite set includes a denumerable subset.
This suggests us to introduce the following definition.

Definition

x is Dedekind infinite if w < x; otherwise x is Dedekind finite.

® x is power Dedekind infinite if w < p(x); otherwise x is power
Dedekind finite.

a is Dedekind infinite if Ng < a; otherwise a is Dedekind finite.

® g is power Dedekind infinite if Ng < 2%; otherwise a is power
Dedekind finite.
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Fact

® @ is Dedekind infinite — a is power Dedekind infinite — a is
infinite

ZF ¥ a is infinite — a is power Dedekind infinite

ZF V¥ a is power Dedekind infinite — a is Dedekind infinite
(Dedekind 1888) a is Dedekind infinite <> a+1=a

The class of all Dedekind finite sets is closed under disjoint
unions.

® g is infinite — 2% is power Dedekind infinite
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Theorem (Kuratowski 1920s)
a is power Dedekind infinite <+ Ng <* a <» 2% < 2¢
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Theorem (Kuratowski 1920s)
a is power Dedekind infinite <> Ng <* a < 2%o L D@

Proof.

¢ From an infinite subset x of p(w), one can explicitly define an
infinite proper subset y of x.

® From an infinite subset x of p(w), one can explicitly define a
surjection f: x — w.

® From an injection f: w — p(x), one can explicitly define a
surjection f: x — w.

O
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Theorem (Kuratowski 1920s)
a is power Dedekind infinite <> Ng <* a < 2%o L D@

Corollary

The class of all power Dedekind finite sets is closed under unions.



Lindenbaum and Tarski's Theorem

Further results

o (Truss 1972) ZFF 2 x Ax*2x B— Ax*B

e (Truss 1984)
NXA*nXxBAnxBx*nxA—-Ax*BABx*A



Lindenbaum and Tarski's Theorem

Further results

o (Truss 1972) ZFF 2 x Ax*2x B— Ax*B

e (Truss 1984)
NXA*nXxBAnxBx*nxA—-Ax*BABx*A

Problem
Is it provable in ZF that for all non-void power Dedekind finite
sets d and all sets A, B, if d x A~ dx B, then A~ B?



Generalizations of Cantor's Theorem

Theorem (Cantor 1892)

20 £* a.

Moreover, from a function f: x — ©(x), one can explicitly define a
u € p(x) — ran(f).



Generalizations of Cantor's Theorem

Theorem (Cantor 1892)

20 £* a.

Moreover, from a function f: x — p(x), one can explicitly define a
u € p(x) — ran(f).

Proof.

Let u= {ze€ dom(f) | z ¢ f(2)}. O
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Theorem (Cantor 1892)
20 £L* a.

Moreover, from a function f: x — p(x), one can explicitly define a
u € p(x) —ran(f).

Remark

Note that 2% £* a is a consequence of the theorem that for all
cardinals a, 2* £ a: from 22° £ 2%, we get 2% £* a.



Generalizations of Cantor's Theorem

Theorem (Cantor 1892)

20 £* a.

Moreover, from a function f: x — p(x), one can explicitly define a
u € p(x) —ran(f).

Remark

Note that 2% £* a is a consequence of the theorem that for all
cardinals a, 2% £ a: from 22" £ 2%, we get 2% £* a.

Theorem (Specker 1954)

For all infinite cardinals a, 2* % a?.



Generalizations of Cantor's Theorem

Theorem (Specker 1954)
For all infinite cardinals a, 2* % a?.

Proof.

® From an infinite ordinal «, one can explicitly define an
injection f: o X @ — .

® From an injection f: o — y X y, where « is an infinite ordinal,
one can explicitly define an injection g: o — .

® From an injection ffrom a subset of p(y) into y X y and an
injection g: w — p(y), one can explicitly define a
u € p(y) — dom(f).



Generalizations of Cantor's Theorem

Further results

e (Tarski 1939) s(x) # x; s(x) = {y C x| y is well-orderable}.

® (Truss 1973) For all infinite sets x, s(x) # x” and w(x) £ x";
w(x) = {f| fis an injection from some ordinal into x}.

¢ (Halbeisen and Shelah 1994) For all infinite sets x,
p(x) # fin(x), where fin(x) = {y C x| y is finite}.

e (Forster 2003) For all infinite sets x, there are no finite-to-one
surjections from p(x) onto x.

¢ (Vejjajiva and Panasawatwong 2014) For all power Dedekind
infinite sets x, p(x) # pdfin(x), where
pdfin(x) = {y C x| y is power Dedekind finite}.

¢ (Keremedis 2016) It is consistent with ZF that there exists a
Dedekind infinite set x such that p(x) < dfin(x), where
dfin(x) = {y C x| y is Dedekind finite}.



Generalizations of Cantor's Theorem

My work

® For all power Dedekind infinite sets x, ©(x) 4o pdfin(x).
® For all sets x, if s(x) (resp., w(x)) is Dedekind infinite, then

s(x) Zato seq™(x) (resp., w(x) Zato seqi™1(x)), where
seq™l(x) = {f| fis an injection from some n € w into x}.

® |t is consistent with ZF that there exists a Dedekind infinite
set x such that [w(x)| < |[x]?].
® For all sets x, y, if x is infinite and y <paso X, then p(x) £* y.

e For all infinite sets x, p(fin(x)) £* seq(fin(x)), where
seq(y) = {f] fis a function from some n € w into x}.



Generalizations of Cantor's Theorem

The dual Specker problem
Is it provable in ZF that for all infinite cardinals a, 2% £* a? ?



Generalizations of Cantor's Theorem

The dual Specker problem
Is it provable in ZF that for all infinite cardinals a, 2° ;{* a2 ?

Remark
Note that we have affirmatively answered a weaker version of this

problem: if there exists an infinite cardinal b such that a = fin(b),
then 2° £* a2,



GCH and AC

Definition
® AH (Aleph Hypothesis): Vo (2% = R,.1)
® CH(a): =3b(a < b < 2%)
¢ GCH: Va(a < w V CH(a))



GCH and AC

Definition
® AH (Aleph Hypothesis): Yo (28 = R, 1)
e CH(a): -3b(a < b < 2%)
¢ GCH: Ya(a < w Vv CH(a))

Theorem (H. Rubin 1960)
If for all well-ordered cardinals k, ©(k) is well-orderable, then AC.

Corollary
AH — AC



GCH and AC

GCH — AC

¢ (Lindenbaum and Tarski 1926) Announcing:
CH(a) A CH(2%) A CH(2%") — 22" is a well-ordered cardinal;
CH(a2) A CH(2%) — 2 is a well-ordered cardinal.
e (Sierpinski 1945)
CH(a) A CH(2%) A CH(22") — a is a well-ordered cardinal.
® (Specker 1954)
CH(a) A CH(2%) — 2% is a well-ordered cardinal.
¢ (Kruse 1960, Kanamori and Pincus 2002) If CH(a) and there
are no increasing sequences of cardinals of length cf(X(a))
between 2% and 22°, then 2% is a well-ordered cardinal.
¢ (Kanamori and Pincus 2002)
ZF ¥ CH(a) — 2% is a well-ordered cardinal



GCH and AC

Does GCH imply AC locally?
ZF + CH(a) — a is a well-ordered cardinal ?



Lauchli's Theorem

Theorem (Lauchli 1961)

For all infinite cardinals a, 2%° + 22" = 22,



Lauchli's Theorem

Theorem (Lauchli 1961)
For all infinite cardinals a, 22° + 22° = 22,
Fact

® ¢ is Dedekind finite - a4+a > a
® @ is power Dedekind finite — 2% 2% > 2¢



Lauchli's Theorem

Theorem (Lauchli 1961)
For all infinite cardinals a, 22° + 22° = 22,

Lemma (Lauchli 1961)

For all infinite cardinals a, 2%ofin(a) — pfin(a),



Lauchli's Theorem

Theorem (Lauchli 1961)

For all infinite cardinals a, 22" + 22° = 22%,

Lemma (Lauchli 1961)
For all infinite cardinals a, 2Ro-fin(a) — ofin(a)
Fact
® ais Dedekind infinite — g - fin(a) = fin(a)
® ais power Dedekind infinite — Ng - fin(a) <* fin(a)
® (Truss 1974) ZF ¥ a is infinite — Rq - fin(a) <* fin(a)



Lauchli's Theorem

Lemma (Lauchli 1961)
For all infinite cardinals a, 2Rofin(a) — ofin(a),

Proof
Let A be a fixed set. For all n, k such that n < k, we define:

* Fok: o([AI") — p([A]F) such that for all X C [A]",
Fok(X) = {y € [A]“] 3x € X(x C y)}
® Gni: 9([A]") = ©([A]") such that for all X C [A]",
Gok(X) = {x € [A]" | Wy € [A](x S y = y € Fo(X))}

* For all X C [A]", Hpi(X) = Gpi(X) — X.



Fact

No oA~ owbd

Lauchli's Theorem

XCYCIA" = Fou(X) € Fai(Y)
X C[A]" = X C Gpi(X)
XCYCIA" = Gri(X) € Gail(Y)

XC A" — Gn,k(Gn, (X)) = Gni(X)

X C A" = Fau(Gri(X)) = Fou(X)

Foi T {XC[A]" | Gpi(X) = X} is 1-1.

For all X C [A]" and all natural numbers m,

mi(X) = Guk(Hy (X)) = HH(X)
k< KANXCI[A]" = Gui(X) C Gpp(X), and hence

{(XCA" | Grw(X) = X; S {XC [A]" | Gri(X)

= X}



Lauchli's Theorem

Key Lemma
XC A" = H(X) =

Corollary
X C[A]" = Hp ((X) = G k(H} (X))



Lauchli's Theorem

Come back to the proof of Lauchli's Lemma
For all X C w X fin(A) and all natural numbers i, n, m, we define:

X9 = x"(}y n[A]”
X(l) = n 2i3n5n 2,3n5,, X(O)

i,n,m
2) 1)
)dnm: n2’3”5'" anm

Let

o= U U i

icw new m=0



Lauchli's Theorem

Note that if m < n, then
° X(2) — ¢ X)O[A]23"5m

o xﬁ}n{m = (Fpoogm | {vc [A]" | Gpaigngm(Y) = v})-1(><§,i’,m>
° )é,(i) :)<l(',];1),0 ()<E];71 )é]r}n 1_)<E]r-1n
o X=U{{it x X0 | iine w}

Hence, ® is an injection from p(w x fin(A)) into p(fin(A)). O



Lauchli's Theorem

My work

® For all infinite cardinals a, 2(fin(@)" = plfin(a)]",

® For all infinite cardinals a and all m > 1,

2fin(fin(u)) — 2fin”’(a) — 2seq(a) — 2seq(fin(a)) — 2seq(seq(a))



Lauchli's Theorem

My work
e For all infinite cardinals a, 2(fin(@))" — 2lfin(a)]”
® For all infinite cardinals a and all m > 1,

2fin(fin(a)) _ 2fin’"(a) _ zseq(a) _ 2seq(fin(a)) _ zseq(seq(a))

Problems
e ZF b a is infinite — 2fin(e) — pfin(fin(a)) 7
e ZF I ais infinite — 22" . 22 = 22" 7



Thank you



