
Better Eager Than Lazy?
How Agent Types Impact the Successfulness of Implicit Coordination

Thomas Bolander
DTU Compute

Technical University of Denmark
Copenhagen, Denmark

tobo@dtu.dk

Thorsten Engesser
University of Freiburg

Freiburg, Germany
engesser@cs.uni-freiburg.de

Robert Mattmüller
University of Freiburg

Freiburg, Germany
mattmuel@cs.uni-freiburg.de

Bernhard Nebel
University of Freiburg

Freiburg, Germany
nebel@cs.uni-freiburg.de

Abstract
Epistemic planning can be used for decision making in multi-
agent situations with distributed knowledge and capabilities.
In recent work, we proposed a new notion of strong policies
with implicit coordination. With this it is possible to solve
planning tasks with joint goals from a single-agent perspec-
tive without the agents having to negotiate about and commit
to a joint policy at plan time. We study how and under which
circumstances the decentralized application of those policies
leads to the desired outcome.

1 Introduction
One important task in multi-agent systems is to collabora-
tively reach a joint goal with multiple autonomous agents
(e.g. robots and humans). For instance, if there is a group of
robots that are supposed to reach target locations, they have
to develop a plan that enables each robot to accomplish its
goal. Taking, for instance the situation in Figure 1, where
the circular robot C wants to go to the cell marked by the
solid circle and the square robot S wants to reach the place
with the solid square (the empty circle and square will only
become important later). One could come up with the fol-
lowing plan: (i) C moves to 2 and then to 4, (ii) S moves to
2 and then to target location 3, and (iii) C finally moves to
target location 2.

This plan could be generated centrally by an external ob-
server and then communicated to the two agents, which will
execute it. We will assume, however, that all plans are devel-
oped by the agents in a distributed fashion. Assuming that
the two agents can observe everything in the world, have
full knowledge of their goals, and execution is determin-
istic, they both can come up with the same plan as above
and execute this plan in a distributed way. If they came up
with different plans but have anticipated that the other agents
might deviate, then the joint execution might still be success-
ful. We have to make strong assumptions about the planning

agent types, though, as we will demonstrate.
The problem of planning and executing in a distributed

fashion becomes significantly more difficult if we drop the
assumption about full observability. In order to illustrate
this point, let us again consider the situation in Figure 1,
but unlike before, let us assume that each robot knows about
their own target positions with certainty (the solid circle and
square), but there is uncertainty about the target position of

the other robot (the empty circle and square are considered
as possible target positions for C and S, respectively). This
means that we still assume a common goal, namely each
robot wants that in the end all the robots have reached their
target positions. However, these target positions are not
common knowledge. In such a situation, we will consider
policies instead of plans, which can branch on observations
and sensing actions. As it turns out, an agent can still come
up with a successful policy which is implicitly coordinated,
i.e., contains only steps such that the acting agent knows that
her step contributes to reaching the goal. The key for gener-
ating such policies is to take perspective shifts, i.e., picturing
oneself in the shoes of the other agent. Giving general suc-
cess guarantees for the joint execution of policy profiles in
a partially observable setting appears to be much more dif-
ficult than in the former case of full observability, though.

1 2 3

4

Figure 1: Multi-robot coordination example

Although taking into account the plans of other agents
to achieve cooperation has been identified as an interest-
ing topic of artificial intelligence research for a considerable
amount of time (Konolige and Nilsson 1980), the application
of implicit coordination has been limited almost exclusively
to the fields of probabilistic robotics (Stulp et al. 2006; An-
derson and Papanikolopoulos 2008; Hollinger et al. 2009)
and Dec-POMDPs (Spaan et al. 2006). While existing clas-
sical planning approaches rely on continual (re-)planning
(Brenner and Nebel 2009), the work we present in this
paper is situated in the context of (multi-agent) epistemic
planning, which can be approached algorithmically either
by compilation to classical planning (Albore et al. 2009;
Kominis and Geffner 2015; Muise et al. 2015) or by search
in the space of “nested” (Bolander and Andersen 2011;
Engesser et al. 2015) or “shallow” knowledge states (Pet-
rick and Bacchus 2002; 2004; Petrick and Foster 2013).

In Section 2, we describe the formal framework for rep-

resenting states as the one in Figure 1, and how actions can
change these states. Section 3 formalizes the notions of poli-
cies, policy profiles and their executions. In Section 4, we
analyze the conditions under which the execution of policy
profiles can be successful.

2 Theoretical Background: DEL
2.1 Epistemic States and Perspective Shifts
To represent planning problems as the one described above
we need a formal framework where: (1) agents can reason
about the first- and higher-order knowledge and ignorance
of other agents; (2) both fully and partially observable ac-
tions can be described in a compact way. Dynamic Epis-
temic Logic (DEL) satisfies these conditions. We first very
briefly recapitulate the foundations of DEL, following the
conventions of Bolander and Andersen (2011).

In the following we will define epistemic languages, epis-
temic states and epistemic actions. All of these are de-
fined relative to a given finite set of agent names (or simply
agents) A and a given finite set of atomic propositions P . To
keep the exposition simple, we will not mention the depen-
dency on A and P in the following. The epistemic language

LK is

' ::= > | ? | p | ¬' | '^' | Ki', where p 2 P and i 2 A.

As usual, we read Ki' as “agent i knows '”. Formulas
are evaluated in epistemic models M = hW, (⇠i)i2A, V i
where the domain W is a non-empty finite set of worlds;
⇠i ✓ W

2 is an equivalence relation called the indistin-

guishability relation for agent i; and V : P ! P(W) as-
signs a valuation to each atomic proposition. For Wd ✓ W ,
the pair (M,Wd) is called an epistemic state (or simply
a state), and the worlds of Wd are called the designated

worlds. A state is called global if Wd = {w} for some
world w (called the actual world), and we then often write
(M, w) instead of (M, {w}). We use S

gl to denote the
set of global states. For any state s = (M,Wd) we let
Globals(s) = {(M, w) | w 2 Wd}. We define truth in
states as follows, where the propositional cases are standard
and hence left out:

(M,Wd) |= ' iff (M, w) |= ' for all w 2 Wd

(M, w) |= Ki' iff (M, w

0
) |= ' for all w0 ⇠i w

A state (M,Wd) is called a local state for agent i if Wd

is closed under ⇠i. Given a state s = (M,Wd), the asso-

ciated local state of agent i, denoted s

i, is (M, {v | v ⇠i

w and w 2 Wd}). Going from s to s

i amounts to a perspec-

tive shift to the local perspective of agent i.
Example 1. Consider the global state s = (M, w1) given
as follows, where the nodes represent worlds, the edges rep-
resent the indistinguishability relations (reflexive edges left
out), and is used for designated worlds:

s =

w1 : p w2 :

1, 2

Each node is labeled with the name of the world, and the
list of atomic propositions true at the world. In the state
s, the proposition p is true but agent 1 does not know this:

s |= p^¬K1p. Hence from the local perspective of agent 1,
p cannot be verified, and we correspondingly have s

1 6|= p

and s

1 6|= ¬p.

2.2 Epistemic Actions and Product Update
To model actions, we use the event models of DEL. An
event model is E = hE, (⇠i)i2A, pre, posti where the do-

main E is a non-empty finite set of events; ⇠i ✓ E

2 is an
equivalence relation called the indistinguishability relation

for agent i; pre : E ! LK assigns a precondition to each
event; and post : E ! LK assigns a postcondition to each
event. For all e 2 E, post(e) is a conjunction of literals
(atomic propositions and their negations, including > and
?). For Ed ✓ E, the pair (E , Ed) is called an epistemic ac-

tion (or simply action), and the events in Ed are called the
designated events. Similar to states, (E , Ed) is called a local

action for agent i when Ed is closed under ⇠i.
Each event of an action represents a different possible out-

come. By using multiple events e, e

0 2 E that are indis-
tinguishable (i.e. e ⇠i e

0), it is possible to obfuscate the
outcomes for some agent i 2 A, i.e. modeling partially ob-
servable actions. Using event models with |Ed| > 1, it is
also possible to model sensing actions and nondeterministic
actions (Bolander and Andersen 2011).

The product update is used to specify the successor state
resulting from the application of an action in a state. Let a
state s = (M,Wd) and an action a = (E , Ed) be given with
M = hW, (⇠i)i2A, V i and E = hE, (⇠i)i2A, pre, posti.
Then the product update of s with a is defined as s ⌦ a =

(hW 0
, (⇠0

i)i2A, V
0i ,W 0

d) where
• W

0
= {(w, e) 2 W ⇥ E | M, w |= pre(e)};

• ⇠0
i =

�
((w, e), (w

0
, e

0
)) 2 (W

0
)

2 | w ⇠i w
0
& e ⇠i e

0 ;
• V

0
(p) = {(w, e) 2 W

0 | post(e) |= p or
(M, w |= p and post(e) 6|= ¬p)};

• W

0
d = {(w, e) 2 W

0 | w 2 Wd and e 2 Ed}.
We say that a = (E , Ed) is applicable in s = (M,Wd)

if for all w 2 Wd there is an event e 2 Ed s.t. (M, w) |=
pre(e).
Example 2. Consider the following epistemic action a =

(E , {e1, e2}), using the same conventions as for epistemic
states, except each event is labeled with hpre(e), post(e)i:

a =

e1 : hp,>i e2 : h¬p,>i

2

It is a private sensing action for agent 1, where agent 1 pri-
vately gets to know the truth value of p, since e1 and e2 are
distinguishable to agent 1 (and indistinguishable to agent 2).
Letting s be the state from Example 1, we get:

s⌦ a =

(w1, e1) : p (w2, e2) :

2

After the private sensing of p by agent 1, agent 1 will know
that p is true, but agent 2 will still not: s⌦a |= K1p^¬K2p.

Isomorphic states and actions will be identified.

3 Planning Tasks, Policies and Executions
In this paper we consider cooperative planning tasks, that is,
planning tasks in which the agents plan towards a joint goal

(Engesser et al. 2015). Each action in a planning task is as-
sumed to be executable by a unique agent, called the owner

of the action. More precisely, given a set of actions A, an
owner function is a mapping ! : A ! A from actions to
their owners. Mapping each action to a unique agent can be
done without loss of generality, since semantically equiva-
lent duplicates can always be added to the action set.
Definition 1. A planning task ⇧ = hs0, A,!, �i consists of
a global state s0 called the initial state; a finite set of actions
A; an owner function ! : A ! A; and a goal formula

� 2 LK. We require that each a 2 A is local for !(a).
Example 3. Consider the planning task hs0, {a1, a2},!, pi
with initial state s0 = and two semantically equivalent
actions a1 = e1 : h>, pi and a2 = e

0
1 : h>, pi for the

owners !(a1) = 1 and !(a2) = 2 (both actions making the
goal p true unconditionally). Both the initial state s0 and the
effects of the actions a1 and a2 are fully observable for both
agents. Intuitively, a solution should prescribe the action a1

for agent 1 or the action a2 for agent 2.

3.1 Policies and Executions
Instead of working with sequential plans, our plans are going
to be policies, representing instructions that can be individ-
ually followed by each of the agents. We impose some min-
imal requirements on these policies to be reasonable. First,
we require knowledge of preconditions (KOP), i.e., in each
state s, the agent i supposed to perform a particular action
a according to policy ⇡ must know that a is applicable in s.
Moreover, we require ⇡ to be unambiguous for all agents in
the sense that in each state s where an agent i is supposed
to act according to ⇡, ⇡ is deterministic for agent i (DET);
finally, we require uniformity, i.e., if the policy ⇡ prescribes
some action a to agent i in state s and agent i cannot distin-
guish s from some other state t, then ⇡ has to prescribe the
same action a for i in t as well (UNIF). More formally:
Definition 2. Let ⇧ = hs0, A,!, �i be a planning task.
Then a policy ⇡ for ⇧ is a partial mapping ⇡ : S

gl
,! P(A),

s. t.
(KOP) f. a. s 2 S

gl, a 2 ⇡(s): a is applicable in s

!(a),
(DET) f. a. s 2 S

gl
, a, a

0 2 ⇡(s) s. t. !(a) = !(a

0
): a = a

0,
(UNIF) f. a. s, t 2S

gl s. t. s!(a)
= t

!(a), a 2 ⇡(s): a 2 ⇡(t).
To characterize the different outcomes of agents acting

according to a common policy, we define the notion of pol-
icy executions. As in more classical non-epistemic settings,
relevant questions are whether the execution process termi-
nates or not, and if it does, whether a goal state is reached.
Definition 3. An execution of a policy ⇡ from a global state
s0 is a maximal (finite or infinite) sequence of alternating
global states and actions (s0, a1, s1, a2, s2, . . .), such that
for all m � 0,
(1) am+1 2 ⇡(sm), and
(2) sm+1 2 Globals(sm ⌦ am+1).
An execution is called successful for a planning
task ⇧ = hs0, A,!, �i, if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= �.

In the following, we will restrict our attention to policies
that are guaranteed to achieve the goal after a finite number
of steps. More formally, this means that all of their execu-
tions must be successful. As in nondeterministic planning,
we call such policies strong (Cimatti et al. 2003).
Definition 4. A policy ⇡ for a planning task ⇧ =

hs0, A,!, �i is called strong if s0 2 Dom(⇡) and for each
s 2 Dom(⇡), any execution of ⇡ from s is successful for ⇧.
A planning task ⇧ is called solvable if a strong policy for ⇧
exists. For i 2 A, we call a policy ⇡ i-strong if it is strong
and Globals(s

i
0) ✓ Dom(⇡).

When a policy is i-strong it means that the policy is strong
and defined on all the global states that agent i cannot ini-
tially distinguish between. It follows directly from the def-
inition that any execution of an i-strong policy from any of
those initially indistinguishable states will be successful. So
if agent i comes up with an i-strong policy, it means that
agent i knows the policy to be successful.

We introduce the notion of reachability to talk about states
that can occur during executions.
Definition 5. Given global states s0 and s, we call s reach-

able from s0 if there are sequences of actions a1, . . . , an and
states s1, . . . , sn = s such that am+1 is applicable in sm and
sm+1 2 Globals(sm ⌦ am+1) for all m = 0, . . . , n� 1. We
call s reachable from s0 by following a policy ⇡ if it is part
of an execution (s0, a1, . . . , s, . . .) of ⇡.

A strong policy ⇡ is implicitly coordinated in the sense
that at any point during its execution, at least one agent
knows that it can execute a particular action as part of the
strong policy ⇡. This is formalized by the following propo-
sition, that follows straightforwardly from Def. 4 and the
uniformity condition in Def. 2.
Proposition 1. Let ⇡ be a strong policy for ⇧ =

hs0, A,!, �i and let s be a non-goal state reachable from s0

by following ⇡. Then for some i 2 A: ⇡(s) \ {a | !(a) =
i} 6= ; and ⇡ is an i-strong policy for hs,A,!, �i.

In this paper, our agents will most often try to plan for all
contingencies (as seen from their local perspective), so that
it never becomes necessary to change policy due to unex-
pected actions by other agents. The relevant notion of “plan-
ning for all contingencies” in this setting is captured by what
we call maximality of strong policies.
Definition 6. We call a strong policy ⇡ a maximal

strong policy for agent i and planning task ⇧ = hs0, A,!, �i
if s 2 Dom(⇡) for all states s such that: (1) s is reachable
from some s

0
0 2 Globals(s

i
0), and (2) hs,A,!,'i is solv-

able.

3.2 Policy Profiles
Besides the centralized scenario in which one agent plans
centrally for all agents, or equivalently, in which the in-
volved agents can already coordinate on a common plan at
plan time, we especially want to study the scenario in which
the agents cannot coordinate their plans, but rather have to
come up with plans individually. Those plans can easily dif-
fer, not only because of different reasoning capabilities of

the different agents, but also because of their non-uniform
knowledge of the initial state and of action outcomes. For
our formal analysis, we define a policy profile for a planning
task ⇧ to be a family (⇡i)i2A, where each ⇡i is a policy
for ⇧. Executions can be generalized to policy profiles as
follows.
Definition 7. An execution of a policy profile (⇡i)i2A is
a maximal (finite or infinite) sequence of alternating global
states and actions (s0, a1, s1, . . .), such that for all m � 0,
(1) am+1 2 ⇡i(sm) where i = !(am+1), and
(2) sm+1 2 Globals(sm ⌦ am+1).
We call such an execution successful if it is a finite execution
(s0, a1, s1, . . . , an, sn) such that sn |= �.

Note that there are two sources of nondeterminism for ex-
ecutions. One as a result from the possibility of multiple
policies prescribing actions for their respective agents (item
1 in Def. 7). The other one results from the possibility of
nondeterministic action outcomes (item 2 in Def. 7). Defi-
nition 4 implies that strong policies are closed in the usual
sense that following a strong policy cannot lead to an “off-
policy” non-goal state where the policy is undefined (Cimatti
et al. 2003). As a first positive result, we can now show
that policy profiles consisting of maximal strong policies are
also closed in the sense that they do not produce dead-end
executions, i. e. executions ending in a non-goal state where
some of the policies in the profile are undefined. By induc-
tive application of Proposition 1, we can show that in each
execution step from s via a = ⇡i(s) to s

0, the policy ⇡i must
be defined for s0, and by maximality of the other policies ⇡j ,
j 6= i, the policies of all other agents have to be defined in
s

0 as well. Hence:
Proposition 2. Let (⇡i)i2A be a policy profile where each ⇡i

is a maximal strong policy for agent i and task ⇧. Then s 2
Dom(⇡i) for all agents i 2 A and states s 2 S

gl

occurring

in arbitrary executions (s0, a1, . . . , s, . . .) of (⇡i)i2A.

If all agents have one strong policy in common which all
of them follow, then at execution time, the goal is guaran-
teed to be eventually reached. If, however, each agent acts
on its individual strong policy, then the incompatibility of
the individual policies may prevent the agents from reach-
ing the goal, even though each individual policy is strong.
The following example illustrates what may go wrong.
Example 4. Let ⇧ = hs0, {a1, a2},!, pi be the planning
task described in Example 3, and let (⇡1,⇡2) be the policy
profile consisting of the two maximal strong policies ⇡1 as-
signing only a2 to s0 and ⇡2 assigning only a1 to s0. Here
each agent expects the other agent to do the work, since the
policy ⇡1 for agent 1 specifies the action a2 belonging to
agent 2 and vice versa. This profile has only one execution,
the empty one, which is unsuccessful.

This shows that agents following maximal strong policies
may still not reach the goal. The issue we see here is that
the agents run into a “deadlock”, and the underlying reason
is that both agents are “lazy”, expecting the other agent to
act. In the following, we will discuss for which types of
agents (lazy, eager, . . .) and for which combinations of them
success can or cannot be guaranteed.

4 Agent Types
We distinguish between different agent types by distinguish-
ing between the types of policies they produce. To that end,
we identify agents with mappings from planning tasks to
policies. Additionally, the agent mapping must be associ-
ated with the part the agent plays in the planning task, since
a policy that is lazy from one agent’s perspective may be ea-
ger from another agent’s perspective; e.g. the policy ⇡1 in
Example 4 is lazy for agent 1, but eager for agent 2.
Definition 8. A planning agent (or simply agent) is a pair
(i, T), where i is an agent name and T is a mapping from
planning tasks to policies, such that T (⇧) is an i-strong pol-
icy for ⇧, whenever such a policy exists.

The requirement of T (⇧) being i-strong, whenever such
a policy exists, comes from the fact that each agent should
produce a policy that it knows will be successful, whenever
it is possible to form such a policy. We can now extend the
definition of executions to groups of agents (i, Ti)i2A.
Definition 9. Let (i, Ti)i2A be a group of agents and let ⇧
be a planning task. Then the executions by (i, Ti)i2A of ⇧
are the executions of the policy profile (Ti(⇧))i2A.

4.1 Lazy and Naively Eager Agents
We already saw that agents being lazy can be problem-
atic. To formally capture laziness (and its dual, eagerness),
we note that laziness essentially means having a preference
against using one’s own actions, and planning with someone
else’s actions instead. Similarly, eagerness means preferring
one’s own actions over someone else’s. Intuitively, an agent
has a preference for (or against) a set of actions if whenever
a policy produced by that agent is defined, it prescribes at
least one preferred action (or no unpreferred action), unless
violating the preference is unavoidable in that state.
Definition 10. For a state s, a policy ⇡, and a set of actions
A

0, we say that ⇡ uses A

0 in s if ⇡(s) \ A

0 6= ;. Then we
say that agent (i, T) has preference

(1) for (the actions in) A

0 if for all ⇧ and all s 2
Dom(T (⇧)), policy T (⇧) uses A

0 in s unless no i-
strong policy for ⇧ uses A0 in s, and

(2) against (the actions in) A

0 if for all ⇧ and all s 2
Dom(T (⇧)), policy T (⇧) does not use A

0 in s unless
every i-strong policy for ⇧ uses A0 in s.

Unfortunately, preference against a set of actions is not
the same as preference for its complement, which is why
we need both notions. We can now define laziness as
preference against one’s own actions, that is, we call an
agent (i, T) lazy if it has preference against the actions in
{a 2 A | !(a) = i}.

To formalize in which sense Example 4 is problematic,
we still have to define deadlocks, which intuitively are states
where (1) something still needs to be done, where (2) it is
known that something can be done, but where (3) nothing
will be done because of incompatible individual policies.
Definition 11. A deadlock for a policy profile (⇡i)i2A is a
global state s such that (1) s is not a goal state, (2) s 2
Dom(⇡i) for some i 2 A, and (3) !(a) 6= i for all i 2 A
and a 2 ⇡i(s).

p
1 2 3 4 5

Figure 2: Planning task—move chess piece left or right.

Requirement (2) is included to distinguish deadlocks from
dead ends, where none of the agents’ policies prescribe an
action, not even for another agent. From the above defini-
tions and Example 4 we immediately get the following re-
sult.
Proposition 3. There are solvable planning tasks for which

all executions by lazy agents result in a deadlock.

To avoid deadlocks, we define (naively) eager agents as
agents who have a preference for their own actions. That is,
we call an agent (i, T) naively eager if it has a preference for
the actions in {a 2 A | !(a) = i}. They are called naively

eager since it will turn out that in their eagerness they can in-

terfere with other agents’ plans and executions in a harmful
way. But still, we first get the positive result that eagerness
prevents the deadlocks we observed for lazy agents.
Proposition 4. Let ⇧ be a planning task and (i, Ti)i2A be

a group of naively eager agents. If ⇡i = Ti(⇧) is a maximal

strong policy for each i 2 A, then all executions of (⇡i)i2A
are deadlock-free.

Proof sketch. Assume for contradiction that s is a deadlock
for (⇡i)i2A. Then there has to exist an agent name i 2 A
and an action a such that a 2 ⇡i(s) with !(a) = j and
j 6= i. Because ⇡j is a maximal strong policy, we have
s 2 Dom(⇡j). Then there also has to exist an a

0 2 ⇡j(s)

with !(a

0
) = j, since (j, Tj) is naively eager and has pref-

erence for its own actions. This contradicts item (3) of Def-
inition 11.

Example 5. Consider the scenario in Fig. 2. The chess piece
can be moved left by agent 1 and right by agent 2 (one cell
at a time). Everything is fully observable. The goal is to
move the piece to one of the highlighted target cells. Every
possible naively eager policy ⇡1 of agent 1 must assign ac-
tion left to every non-goal state, and similarly, every naively
eager policy ⇡2 of agent 2 must assign right to every non-
goal state. Using si to denote that the piece is in cell i,
one possible execution of any such policy profile (⇡1,⇡2) is
the infinite sequence (s3, left , s2, right , s3, left , . . .), which
is clearly not successful.

This shows that naively eager agents may also not reach
the goal since they can potentially produce infinite execu-
tions.
Proposition 5. There are solvable planning tasks for which

some executions by naively eager agents are infinite.

4.2 Optimally Eager Agents
In order to address the stated problem, we will now consider
agents who always try to simplify the problem by reaching
states closer to the goal. This means that the agents should
come up with optimal policies, policies that reach the goal in

the fewest number of steps. In order to formally define opti-
mal policies, we need the notion of cost. The cost of a policy
can be defined as its worst-case execution length, that is, the
number of actions in its longest possible execution. An op-
timal policy is then one of minimal cost. However, due to
partial observability, different agents might assign different
costs to the same policy, and hence disagree on which poli-
cies have minimal cost.

For instance, in a variant of Example 5, agent 1 might
not know whether the chess piece is initially in cell 3 or 4,
and agent 2 might not know whether it is initially in cell 2
or 3. Then agent 1 would assign cost 2 to the “go right”
strategy, but cost 3 to the “go left” strategy (according to the
knowledge of agent 1, the chess piece might initially be in
cell 4, and hence 3 cells away from cell 1). Conversely, agent
2 would assign cost 2 to the “go left” strategy and cost 3 to
the “go right” strategy. If both agents choose strategies of
minimal cost, they would choose opposing strategies: agent
1 would want agent 2 to go right, and agent 2 would want
agent 1 to go left. Clearly this will result in a deadlock.

To remedy this, we need the agents to measure cost in
a “perspective-sensitive” way: the assigned cost takes the
different perspectives of the involved agents into account.
Definition 12. Let ⇡ be a strong policy for a planning task
⇧. The perspective-sensitive cost (or simply cost) of ⇡ from
a state s 2 Dom(⇡), denoted ⇡(s), is defined as:

⇡(s) =

⇢
0 if there exists no a 2 ⇡(s)

1 + maxa2⇡(s),s02Globals(s!(a)⌦a) ⇡(s
0
) else.

We extend this to local states s with Globals(s) ✓ Dom(⇡)

by letting ⇡(s) := maxs02Globals(s) ⇡(s
0
).

The following proposition captures the intuition that
perspective-sensitive costs can only increase with additional
uncertainty (by shifting perspective), and that in each global
state s with ⇡(s) 6= ;, one or more actions can be identified
as the ones maximizing the perspective-sensitive cost for the
successor state and thus defining the value of ⇡(s). We will
need this to prove deadlock-freedom in Proposition 7.
Proposition 6. For any policy ⇡, epistemic state s and

agent i 2 A, it holds that ⇡(s)  ⇡(s
i
). Moreover,

if ⇡(s) > 0, then there is an action a 2 ⇡(s) such that

⇡(s) = ⇡(s
!(a)

).

It can be verified that in the variant of Example 5 with
partial observability about the initial state of the chess piece,
both the “go left” and the “go right” strategy will have the
same (perspective-sensitive) cost 3. The point is that the cost
assigned to the “go left” strategy will be measured from the
local state of the owner of the “go left” action, and similarly
for “right”, as seen from the Def. 12.
Definition 13. A policy ⇡ for a planning task ⇧ =

hs0, A,!, �i is called subjectively optimal if for all s 2
Dom(⇡), all a 2 ⇡(s) and all !(a)-strong policies ⇡

0 for
hs,A,!, �i we have ⇡0

(s

!(a)
) � ⇡(s

!(a)
).

Definition 14. Given a set of actions A0, we say that agent
(i, T) is subjectively optimal with preference for the actions

in A

0, if for all ⇧: (1) T (⇧) is an i-strong subjectively op-
timal policy if such a policy exists, and (2) T (⇧) uses A0 in

each s 2 Dom(⇡) unless no i-strong subjectively optimal
policy for ⇧ uses A0 in s.

We call an agent that is subjectively optimal with prefer-
ence for its own actions optimally eager. That is, a planning
agent (i, T) is called optimally eager if it is subjectively op-
timal with preference for the actions in {a 2 A | !(a) = i}.

In the variant of Example 5 with partial observability
about the initial state, optimally eager agents will always be
successful. They assign the same cost to both the “go left”
and “go right” strategies, but are eager, and will hence prefer
the policy where they act themselves. So initially they spec-
ify conflicting actions. Assume agent 1 gets to act first and
moves one cell left. In the resulting state, agent 2 assigns
cost 3 to the “move right” strategy and only cost 2 to the
“move left” strategy. Hence agent 2 will not try to prevent
agent 1 from moving the chess piece to the far left.

On the other hand, an optimally lazy agent (which we
could define analogously, by first defining subjective opti-

mality with preference against own actions) would exhibit
the same deadlock potential as naively lazy agents. We can
also see this in Example 4, where both policies are in fact
subjectively optimal ones. Our focus will thus be on op-
timally eager agents. We can indeed show that optimally
eager agents do not produce deadlocks.

Proposition 7. Let ⇧ be a planning task and (i, Ti)i2A be a

group of optimally eager agents. If ⇡i = Ti(⇧) is a maximal

strong policy for each i 2 A, then all executions of (⇡i)i2A
are deadlock-free.

Proof sketch. Let s be a reachable non-goal state. We ana-
lyze waiting chains, i. e., sequences of agents i

1
, . . . , i

n+1,
such that (abbreviating ⇡ij as ⇡

j , and ⇡j as 

j), for all
j = 1, . . . , n, (1) there is no a 2 ⇡

j
(s) with !(a) = i

j ,
and (2) there is an a 2 ⇡

j
(s) with 

j
(s

!(a)
) = 

j
(s)

and !(a) = i

j+1. By Proposition 6 and the definition of
subjective optimality, we have 

j+1
(s)  

j+1
(s

!(a)
) 



j
(s

!(a)
) = 

j
(s) for all j = 1, . . . , n. This implies

that no agent can occur more than once in a waiting chain,
since that would directly contradict its eagerness. Thus, if
s 2 Dom(⇡

1
) and ⇡

1
(s) 6= ; for some agent i1 2 A,

then there has to exist a maximal waiting chain i

1
, . . . , i

n,
where the last agent in has an action a 2 ⇡

n
(s) such that

!(a) = i

n.

We can also show that all agents being optimally eager
prevents infinite executions in the simple setting with uni-
form observability. We call a planning task hs0, A,!, �i
uniformly observable if all agents share the same indistin-
guishability relations, both in the initial state s0 and in all
actions a 2 A, which is tantamount to assuming that there
is a single agent planning in the belief space of a partially
observable nondeterministic (POND) problem (Bonet and
Geffner 2000).

Proposition 8. Let ⇧ be a uniformly observable and solv-

able planning task and let (i, Ti)i2A be a group of optimally

eager agents. Then all executions by (i, Ti)i2A of ⇧ are

finite.

Proof sketch. Let ⇡i = Ti(⇧) for each agent i 2 A. Then
for any transition (. . . , s, a, s

0
, . . .) occurring in an execu-

tion, we have ⇡i(s
0
)  ⇡i(s) � 1 for the acting agent

i = !(a). Due to uniform observability and optimality,
⇡i(s

0
) = ⇡j (s

0
) for any j 2 A with s

0 2 Dom(⇡j). Thus,
by monotonicity, the execution ends after at most ⇡i(s

0
)

more actions.

This means that in the uniformly observable setting, we
can guarantee each execution to be successful, given all
agents are optimally eager and act with respect to a maximal
strong policy. Our result follows directly from Propositions
7 and 8.
Proposition 9. Let ⇧ be a uniformly observable planning

task and (i, Ti)i2A be a group of optimally eager agents. If

⇡i = Ti(⇧) is a maximal strong policy for each i 2 A, then

all executions of (⇡i)i2A are successful.

Unfortunately, if there is non-uniform observability, op-
timally eager agents cannot always prevent infinite execu-
tions, as we see in the following example.
Example 6. Consider another variant of Example 5, where
the initial position of the chess piece is again fully observ-
able, but where the information about possible target cells is
non-uniformly distributed. The initial state is given as s3 =

at3, t1 at3, t1, t5 at3, t5

1 2 with ati meaning that the piece is in

cell i, and ti meaning that cell i is a target position. The joint
goal is � = (t1 ! at1) ^ (t5 ! at5). Since agent 1 only
knows that cell 1 is a target while agent 2 only knows that
cell 5 is one, optimally eager agents would produce policies
where they move the piece always in their own direction.
Similar to Example 5, an infinite execution would then be
(s3, left , s2, right , s3, left , . . .).

We can see from Example 6 that it is generally not pos-
sible to solve the problem of infinite executions just by im-
posing restrictions on the types of agents. Since, in this ex-
ample, for each state s and agent i there is only one possible
choice of action as part of an i-strong policy (left for agent
1, right for agent 2), every conceivable combination of plan-
ning agents produces infinite executions. Hence we get the
following:
Proposition 10. For every group of at least two agents

(i, Ti)i2A there exists a partially observable and solv-

able planning task ⇧ that has unsuccessful executions by

(i, Ti)i2A of ⇧.

It is important to note that planning tasks with non-
uniform knowledge do exist in which implicit coordination
by optimally eager agents is guaranteed to be successful, i.e.,
without the potential occurrence of infinite executions. In
particular, by allowing communication between the agents
to be modelled directly as part of the planning task (using an-
nouncement actions), it is possible to solve more problems.
One example in this class of planning tasks is the robots ex-
ample from the introduction. To guarantee the existence of
strong policies, we enable a robot that has reached its tar-
get position to publicly announce that fact as its final action
(e.g., by visibly powering down).

A subjectively optimal policy for the square robot (that
can be easily extended to a maximal, optimally eager one) is
depicted in Figure 3. Solid edges denote actions and dashed
edges denote indistinguishability. For clarity, only such in-
distinguishability edges are shown that talk about the agent
designated to act and that, via uniformity, enforce inclusion
of some action in the policy. Here, the square robot starts
by moving out of the way of the circular robot, in order to
allow the circular robot to move to the leftmost cell. This
is because only from this position, the circular robot can
make sure that the square robot will be able to reach its
goal cell. Independently of the actual goal cell of the square
robot, the square robot will then be able to move there and
power down, after which the circular robot can finish the
task. Note that this strategy will succeed for the given global
initial state no matter which strong policy the circular robot
chooses, just provided it is subjectively optimal. If the ac-

right

down

left

left

up

right

announce

right

right

down

left

left

up

right

announce

left

left

announce

right

left

left

announce

Figure 3: Depiction of a strong policy for the robots example

tual goal cell for the circular robot was the leftmost one, an
optimally eager circular robot would already try to announce
and power down earlier when having reached its destination.
This contingency is covered by the maximal version of the
policy (or with re-planning).

5 Conclusion and Discussion

We investigated how agent types impact the successfulness
of implicit coordination in cooperative multi-agent plan-
ning with distributed knowledge and capabilities. We dis-
tinguished between lazy and eager agents and saw that lazy
agents may produce deadlocks (waiting for one another to
move), a problem that does not show up with eager agents.
However, it turned out that over-eager agents can produce
infinite executions instead (unintentionally working against
each other), which can only be avoided under rather strong
assumptions, namely if the agents optimize what we termed
perspective-sensitive costs and if they have uniform observ-
ability. Under non-uniform observability, even optimally ea-
ger agents may unintentionally sabotage each other.

This means that there is no general positive result for non-
uniformly observable settings such as the motivating multi-
robot coordination example with uncertain target positions
(Fig. 1). Still, in that particular example, implicit coordina-
tion does work and we can guarantee a successful execution
taking both robots to their targets, if we allow the first robot
that reaches its target to publicly announce that fact. How-
ever, to ensure successful implicit coordination, the square
robot has to move first, and the total number of moves (ex-
cluding the announcement) will be 7 instead of 5 as in the
full observability case.

For future work, we plan to investigate under which ad-
ditional assumptions unintentional sabotage can be avoided.
While, using our current solution concept, infinite execu-
tions often cannot be prevented, some improvements cer-
tainly can be made by increasing the agents’ reasoning ca-
pacity. Currently, our only assumption is that by performing
perspective shifts, agents can ensure other agents to be able
to find the relevant subpolicies in the future. By making an
even stronger assumption, namely that it is common knowl-
edge that each observed state change has to be caused by
the action of a rational agent of a certain type (e.g., an op-
timally eager one), it would be possible for agents to infer
additional useful information. This way, e.g., in Example 6,
the move of an agent would already signal the existence of
the unknown target cell to the other agent. At least after one
action from both agents, the remaining task would be fully
observable and thus without potential for infinite executions.
Similarly, in the robots example, it should be possible for
the square robot to signal being at the goal position to the
circle agent just by waiting, effectively rendering the addi-
tional announcement action unnecessary. We believe that by
improving our solution concepts to enable this kind of rea-
soning, and by imposing sufficient conditions on the actions
that are available to the agents, it will be possible to solve a
wide range of cooperative tasks using implicit coordination.

References
Alexandre Albore, Hector Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In Pro-

ceedings of the 21st International Joint Conference on Arti-

ficial Intelligence (IJCAI 2009), pages 1623–1628, 2009.
Monica Anderson and Nikolaos Papanikolopoulos. Implicit
cooperation strategies for multi-robot search of unknown ar-
eas. Journal of Intelligent and Robotic Systems, 53(4):381–
397, 2008.
Thomas Bolander and Mikkel Birkegaard Andersen. Epis-
temic planning for single and multi-agent systems. Journal

of Applied Non-Classical Logics, 21(1):9–34, 2011.
Blai Bonet and Hector Geffner. Planning with incomplete
information as heuristic search in belief space. In Proceed-

ings of the 5th International Conference on Artificial Intelli-

gence Planning Systems (AIPS 2000), pages 52–61, 2000.
Michael Brenner and Bernhard Nebel. Continual plan-
ning and acting in dynamic multiagent environments. Au-

tonomous Agents and Multi-Agent Systems, 19(3):297–331,
2009.
Alessandro Cimatti, Marco Pistore, Marco Roveri, and
Paolo Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1–
2):35–84, 2003.
Thorsten Engesser, Thomas Bolander, Robert Mattmüller,
and Bernhard Nebel. Cooperative epistemic multi-agent
planning with implicit coordination. In Proceedings of

the 3rd Workshop on Distributed and Multi-Agent Planning

(DMAP 2015), pages 68–75, 2015.
Geoffrey Hollinger, Sanjiv Singh, Joseph Djugash, and
Athanasios Kehagias. Efficient multi-robot search for a
moving target. The International Journal of Robotics Re-

search, 28(2):201–219, 2009.
Filippos Kominis and Hector Geffner. Beliefs in multiagent
planning: From one agent to many. In Proceedings of the

25th International Conference on Automated Planning and

Scheduling (ICAPS 2015), pages 147–155, 2015.
Kurt Konolige and Nils J. Nilsson. Multiple-agent planning
systems. In Proceedings of the 1st Annual National Confer-

ence on Artificial Intelligence (AAAI 1980), pages 138–142,
1980.
Christian Muise, Vaishak Belle, Paolo Felli, Sheila McIl-
raith, Tim Miller, Adrian R. Pearce, and Liz Sonenberg.
Planning over multi-agent epistemic states: A classical plan-
ning approach. In Proceedings of the 29th AAAI Conference

on Artificial Intelligence (AAAI 2015), pages 3327–3334,
2015.
Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-
based approach to planning with incomplete information
and sensing. In Proceedings of the 6th International Con-

ference on Artificial Intelligence Planning Systems (AIPS

2002), pages 212–222, 2002.
Ronald P. A. Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proceedings of the 14th Interna-

tional Conference on Automated Planning and Scheduling

(ICAPS 2004), pages 2–11, 2004.
Ronald P. A. Petrick and Mary Ellen Foster. Planning for so-
cial interaction in a robot bartender domain. In Proceedings

of the 23rd International Conference on Automated Plan-

ning and Scheduling (ICAPS 2013), pages 389–397, 2013.
Matthijs T.J. Spaan, Geoffrey J. Gordon, and Nikos Vlas-
sis. Decentralized planning under uncertainty for teams of
communicating agents. In Proceedings of the 5th Interna-

tional Joint Conference on Autonomous Agents and Multia-

gent Systems (AAMAS 2006), pages 249–256, 2006.
Freek Stulp, Michael Isik, and Michael Beetz. Implicit co-
ordination in robotic teams using learned prediction mod-
els. In Proceedings 2006 IEEE International Conference on

Robotics and Automation (ICRA 2006), pages 1330–1335,
2006.

