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Outline
@ Backgrounds
e Neighborhood semantics & ‘Basic’ neighborhood logic NL
e ‘Instantial’ neighborhood logic INL
e Expressive power & Axiomatization
@ Proof Theory

e Semantic tableau & Hyper-sequent calculus HSinl
e Soundness, (Cut)-admissibility, & Completeness
e Lyndon interpolation

@ Future directions
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Abbreviation: “nbd” means “neighborhood”

Background
Joint work with

Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist
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Nbd semantics

@ Frame: § = (W, 0)
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Nbd semantics

@ Frame: §=(W,0)
o W # @, adomain;
o o: W 22" anbd function.
@ Model: M = (F, V)
@ §, anbd frame;
e V: W 2%, a propositional valuation.
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Nbd semantics

@ Frame: §=(W,0)

o W # @, adomain;

o o: W 22" anbd function.
@ Model: Mt = (3, V)

@ §, anbd frame;

e V: W 2%, a propositional valuation.
@ Remarks:

e Nbd semantics is general
e Specified properties of nbd functions

each state has a nbd,

{w} is a nbd of w (resp. @, W, ...),
each nbd is non-empty,

each nbd of w contains w,

each state has exactly 1 nbd,

nbd is closed under ... .
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Basic nbd logic NL

@ Basic modal language: unary operator [J (¢ as defined).
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Basic nbd logic NL

@ Basic modal language: unary operator [J (¢ as defined).
@ Truth definition - a 3V reading of [:

o M wE Oaiff (IN € o(w))(Yne N)M, nk .
e a neighborhood (of the current state) has « true
everywhere inside.
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Basic nbd logic NL

@ Basic modal language: unary operator [J (¢ as defined).
@ Truth definition - a 3V reading of [:

o M wE Oaiff (IN € o(w))(Yne N)M, nk .

e a neighborhood (of the current state) has « true

everywhere inside.

@ Some schemes of normal K are NOT valid:

o ¥(p—q)—(Op—Uaq),

o ¥ (OpAUq)—0O(pAq),

o (Nec) (ko) # (=00g).
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Basic nbd logic NL

@ Axiomatization:

@ (axiom and rule) Schemes of classical propositional calculus.
@ Rule scheme RE (rule of replacement)

aefB ¢

/

where ¢’ is ¢ with an occurrance of « replaced by 3
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Basic nbd logic NL

@ Axiomatization:

@ (axiom and rule) Schemes of classical propositional calculus.
@ Rule scheme RE (rule of replacement)

a+ 10)

/

where ¢’ is ¢ with an occurrance of « replaced by 3

o O(anp)—D0aADp.

@ An a A B neighborhood is also an « neighborhood.
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Instantial nbd logic INL

@ Same frames/models with an “instantial” language:
e Operator (with any positive finite arity) O(ay, ..., oyj; ag).
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Instantial nbd logic INL

@ Same frames/models with an “instantial” language:

e Operator (with any positive finite arity) O(ay, ..., oyj; ag).
@ Truth definition - a “3(3, ..., 3; V)" reading of [I:

o M, wkE (o, ..., a; ap) iff

(Yne N)M, nE ag
(3[71 S N) gﬁ, mE aq
(AN € o(w)){ |

(3n; e N)YIM, nj E o
@ a neighborhood (of the current state) has

@ «y true everywhere inside, and
@ «; true somewhere inside (resp. for each i € {1, ..., j}).
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
o cf. avalidity: F -0O(«; L).
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
o cf. avalidity: F -0O(c; L).
o FOI(;T) (a state can have no neighborhoods).
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
o cf. avalidity: F -0O(c; L).
o FOI(;T) (a state can have no neighborhoods).

o ¥ O(a;¥) AD(B;¥)—0O(a, B;9)

(neighborhoods given by premises may be distinct).
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
o cf. avalidity: F -0O(c; L).
o FOI(;T) (a state can have no neighborhoods).

o ¥ O(a;¥) AD(B;¥)—0O(a, B;9)

(neighborhoods given by premises may be distinct).
@ Also, there are valid schemes.
e An axiomatization later.
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Instantial nbd logic INL

@ Some invalid schemes:
o K -0O(; L) (empty neighborhoods are permitted)
o cf. avalidity: F -0O(c; L).
o FOI(;T) (a state can have no neighborhoods).

o ¥ O(a;¥) AD(B;¥)—0O(a, B;9)

(neighborhoods given by premises may be distinct).
@ Also, there are valid schemes.

e An axiomatization later.
@ Reducible to NL? NO.
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INL - expressive power

@ ¢ in the basic language can be written as O(; ¢).
o Letn=0in0O(¢1, ..., on; ).

e Expressive power of the new language is not weaker than
the basic language.
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INL - expressive power

@ ¢ in the basic language can be written as O(; ¢).
o Letn=0in0O(¢1, ..., on; ).

e Expressive power of the new language is not weaker than
the basic language.

@ The new language is

strictly more expressive

than the basic one.
@ So axiomatization of INL is not trivial.
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INL - expressive power

@ (Basic bisimulation test): - if w = w/, i.e.:
o V(w)=V'(w),
o VN € o(w).3N' € o(w').¥n' € N'.3ne N.(n= '),
o VN e o(W).3N € o(w).¥Yne N3n" e N.(n=n');
then w and w’ agree on all formulas in the basic language.
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INL - expressive power

@ (Basic bisimulation test): - if w = w/, i.e.:
o V(w)=V'(w),
o VN € o(w).3N' € o(w').¥n' € N'.3ne N.(n= '),
o VN e o(W).3N € o(w).¥Yne N3n" e N.(n=n');
then w and w’ agree on all formulas in the basic language.
@ No longer capable in the instantialbe setting:

0 0=0 0’

{ 1
1Ep 1"Ep

2
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INL - expressive power

@ (Basic bisimulation test): - if w = w/, i.e.:
o V(w)=V(w),
e VN e o(w)3N €o(W)Vn e N3ne N.(n=n'),
o VN e o(W).3N € o(w).¥Yne N3n" e N.(n=n');

then w and w’ agree on all formulas in the basic language.
@ No longer capable in the instantialbe setting:

0EO(-p; T o' ¥ O(-p; T
0 (-p; T) 9 (-p; T)

1Ep 1"Ep
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INL - expressive power

@ B.t.w, an instantial bisimulation should should take care of both directions:
o V(w)=V'(w),
o if YN € o(w).3IN' € o(w).
[V e N.3ne N.(n=nm)]&[Vvne N3n" e N'.(n=n')]],
o if YN € o(W').3N € a(w).
[Vhne N3 e N.(n=2n)|&[Vn' €e N'.3ne N.(n= n')]].
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:

@ R — mon:
O(ay, ..., aj; a0) = O(evt, ... o g V 1)
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:
@ R— mon:
O(ay, ..., aj; a0) = O(evt, ... o g V 1)
@ L— mon:

O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:

@ R— mon:

O(ay, ..., aj; a0) = O(evt, ... o g V 1)
@ L— mon:

O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
@ Inst:

O(ay, ..., aj,m;a0) = O(ay, ..., a5, m A ag; ag)
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:
@ R— mon:
O(ay, ..., aj; a0) = O(evt, ... o g V 1)
@ L — mon:
O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
@ Inst:
O(ay, ..., aj,m;a0) = O(ay, ..., a5, m A ag; ag)

—O(ov, ..., a, L; ap)
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:

@ R — mon:
O(ay, ..., aj; a0) = O(evt, ... o g V 1)

O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
O(ay, ..., aj,m;a0) = O(ay, ..., a5, m A ag; ag)
—O(ov, ..., a, L; ap)

O(ay, ..., a0) = (O(ev, ..., v, 0; 00) V(v ..o, gy g A—0))
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:

@ R— mon:

O(ay, ..., aj; a0) = O(evt, ... o g V 1)
@ L— mon

O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
@ Inst

O(ay, ..., aj,m;a0) = O(ay, ..., a5, m A ag; ag)
@ Norm

—O(ov, ..., a, L; ap)
@ (Case

O(ay, ..., a0) = (O(ev, ..., v, 0; 00) V(v ..o, gy g A—0))
o Weak

O(ay, az, ..., o; ag) = O( 2, ..., a5 ag)
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INL - axiomatization

@ Classical propositional logic with rule scheme RE;
@ Additional schemes:

@ R— mon:
O(ay, ..., aj; a0) = O(evt, ... o g V 1)
@ L— mon
O(ad, ..., a), ¢ o) = O(at, ..y o, &V U5 )
@ Inst
O(ay, ..., aj,m;a0) = O(ay, ..., a5, m A ag; ag)
@ Norm
—O(ov, ..., a, L; ap)
@ (Case
O(ay, ..., a0) = (O(ev, ..., v, 0; 00) V(v ..o, gy g A—0))
o Weak
O(ay, az, ..., o; ag) = O( 2, ..., a5 ag)
@ Dupl:
O(at, ..., aj; ap) = O(av, ..., o, v ) where i e {1,...,j}
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INL - axiomatization

@ Some Derivable Schemes:
o '_D(O‘h’O‘177765/B177ijw)_>|:|(a1vaalaéa’}/aﬂhaﬁjvw)
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INL - axiomatization

@ Some Derivable Schemes:

o FO(at,...,ai,7,0,B1, ..., B )= 0O(as, ..., i, 8,7, B, ..., Bji )
@ Together with Weak and Dupl, we can read
‘instance-formulas’ as a finite set.
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INL - axiomatization

@ Some Derivable Schemes:

o FO(at,...,ai,7,0,B1, ..., B )= 0O(as, ..., i, 8,7, B, ..., Bji )
@ Together with Weak and Dupl, we can read
‘instance-formulas’ as a finite set.

o 0o, ..., 0 ) = O(axs, ..., 0, T; a0), when j > 0
@ Not valid when j = 0.
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INL - axiomatization

@ Some Derivable Schemes:

o FO(at,...,ai,7,0,B1, ..., B )= 0O(as, ..., i, 8,7, B, ..., Bji )
@ Together with Weak and Dupl, we can read
‘instance-formulas’ as a finite set.

o 0o, ..., 0 ) = O(axs, ..., 0, T; a0), when j > 0
@ Not valid when j = 0.
. o=
O(eu, ..., oj; ) = O(ev, ..., o )
@ R — mon as a rule scheme.
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INL - axiomatization

@ Some Derivable Schemes:
o FO(at,...,ai,7,0,B1, ..., B )= 0O(as, ..., i, 8,7, B, ..., Bji )
@ Together with Weak and Dupl, we can read
‘instance-formulas’ as a finite set.
o 0o, ..., 0 ) = O(axs, ..., 0, T; a0), when j > 0
@ Not valid when j = 0.
. )
O(eu, ..., oj; ) = O(ev, ..., o )
@ R — mon as a rule scheme.
¢y
O(ou, ..., o, ¢; o) = O(eut, ..., o, 95 )
@ L — mon as a rule scheme.
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Complexity

@ Satisfiability problem of INL is PSPACE-complete.

e Faithful embeddings K — INL — K@ K;
@ Both Kand K& K are PSPACE-complete.
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Proof Theory

Junhua Yu A Hyper-sequent Calculus for INL



Semantic tableau

@ General idea of semantic tableau

e In order to prove ¢, start with the goal of satisfying —¢
e Reduce goals to subgoals (usually on subformulas)

@ Rules
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Semantic tableau

@ General idea of semantic tableau

e In order to prove ¢, start with the goal of satisfying —¢
e Reduce goals to subgoals (usually on subformulas)

@ Rules
e Impossible goals are “closed”, otherwise “open”

@ Impossible - have L or ‘both o and —¢’;
@ “Open” tableaus provide hints to counter-models (of ¢);
@ “Closed” tableaus are defined as proofs (of ¢).
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Semantic tableau

@ General idea of semantic tableau

e In order to prove ¢, start with the goal of satisfying —¢
e Reduce goals to subgoals (usually on subformulas)
@ Rules
e Impossible goals are “closed”, otherwise “open”
@ Impossible - have L or ‘both o and —¢’;
@ “Open” tableaus provide hints to counter-models (of ¢);
@ “Closed” tableaus are defined as proofs (of ¢).
@ Rules for classical propositional logic
||...|| means branching

¢ aAB (aVB) —(a=p)  (aAB) aVvp a—f

¢ o - o =l =811 llall Bl ll=el] Bl
B -6 -6
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Semantic tableau

@ INL needs (at least) a modal rule.

e A [O-formula requires a nbd (with certain properties);
A —[O-formula refutes any nbd (with certain properties).
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Semantic tableau

@ INL needs (at least) a modal rule.
e A [O-formula requires a nbd (with certain properties);
A —[O-formula refutes any nbd (with certain properties).
e [I's do not work together to close a goal;
they each does, together with all =[7’s in the same goal.
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Semantic tableau

@ INL needs (at least) a modal rule.
e A [O-formula requires a nbd (with certain properties);
A —[O-formula refutes any nbd (with certain properties).
e [I's do not work together to close a goal;
they each does, together with all =[7’s in the same goal.
@ The rule takes from a goal:
e one O-formula, and
e and any number of -O-formulas
(with variant numbers of instances):

ﬂII’(/B‘? ’ "'7/81'11 ; 5(1))

_‘D(ﬁfv a B]i; Bg)
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Semantic tableau

O(ay, ..., aj; ap)

08} 815 8Y)

OB, -, B B6)

|Oéo/\0' |

crE{ozx}{(:1 H

@ O(ay, ..., aj; ag) requires a nbd with (generally) j states.
Each nbd is consistent, if all its states are.
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Semantic tableau

O(evq, ..., of; )

~0(8}, 813 8)

OB, -, B )

|Oéo/\0'

oo ui-5)) ’ ‘

@ O(ay, ..., aj; ag) requires a nbd with (generally) j states.
Each nbd is consistent, if all its states are.

e Vie {1,..,k}, ~0(8, ""Bj’:,-; B85 requires that
either - 56 fails at some state,
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Semantic tableau

O(ay, ..., aj; ag)

~0(8}, 813 8)

O, -, B 55)

lag Ao A

- i . X
B |ae{ax}§:1u{ﬂﬂé} H

@ O(ay, ..., aj; ag) requires a nbd with (generally) j states.
Each nbd is consistent, if all its states are.
evVvie{l,.., k}, ﬁD(m,...,BJ’}; fp) requires that
either - 3| fails at some state,

or - B fails at each state for some h € {1,...,ji}-
o
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Semantic tableau

O(at, ..., aj; ag)

~0(8}, 813 8)

OB, - 5 55)

1(1)#0
o /\0/\/\16{1 ok} ﬁ/(l ’0’6{04)(} Ju{-gy =0

ye{l,....k}

le@K_,{0,....j}

@ O(ay, ..., aj; ag) requires a nbd with (generally) j states.
Each nbd is consistent, if all its states are.
o Vie{l ..k} -0(8, ""Bj’:,-; B85 requires that
either - 3| fails at some state,
or - 4, fails at each state for some h e {1, ..., j;}.
@ T1%_,(j: + 1) options in total.
Index possible nbd’s by the option it takes, e.g., (/(1), ..., I(k)).
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Semantic tableau

O(a, ..., aj; )

~0(8), . B 53)

OB, ..., 5 BK)

()0
’04 /\U/\/\,E{1 Lk} B/(I)’UE{O(X} U= /jo}l(y

ye{t,.

He®f_1{0,...J2}
e Itis TT_, (j» + 1)-branching

In order to close a tableau, each branch has to be closed.
Branch correspond to neighborhoods of the current state.
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Semantic tableau

O(a, ..., aj; )

~0(61, ... B} 53)

OB, ..., 5 BK)

()0
’04 /\U/\/\,E{1 Lk} B/(I)’UE{O(X} U= /jo}l(y

ye{t,.

Hile®%_,10,...j}

e Itis TT_, (j» + 1)-branching
In order to close a tableau, each branch has to be closed.
Branch correspond to neighborhoods of the current state.
@ Each branch offers a hyper-node
A collection of regular nodes (labeled by formulas).
To close a branch, it is enough to close one node in the hyper-node.

Nodes correspond to states in the neighborhood.
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Semantic tableau

O(evt, ..., aj; ag)

OB}, s B 52)

(B, ... B BE)

1(i)#0
lag /\U/\/\/e{1 kY B/(’)|0€{ax} ,U{-pYyW=0

ye{t,..., k}

le®E_4{0,....jz}

@ |t is destructive
Formulas (used or not) above the line cannot be used any longer (on this
branch) to trigger a rule or to close a branch.

@ Anexample - O(¢ Vv x; 0)—0(¢; 0) v O(x; 0)
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Semantic tableau

@ Call the above mentioned tableau system TABiIn/
e TABinl is sound and complete
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Semantic tableau

@ Call the above mentioned tableau system TABiIn/
e TABinl is sound and complete

@ The direct proof of completeness requires an extraction of
counter-model out of a ‘systematical-yet-failed’ implement of
rules, and hence is ugly
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Semantic tableau

@ Call the above mentioned tableau system TABiIn/
e TABinl is sound and complete
@ The direct proof of completeness requires an extraction of

counter-model out of a ‘systematical-yet-failed’ implement of
rules, and hence is ugly

e TABiInl offers a decision procedure

e TABinl indicates a way to some real proof-theory
- a hyper sequent calculus
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Hyper-sequent calculus HSinl

@ Primitive connectives: { L, —, [} (classical)
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Hyper-sequent calculus HSinl

@ Primitive connectives: { L, —, [} (classical)
@ Multi-set-based, G3-style

e No Exchange
e Built-in Weakening and Contraction
e Easier proofs of (Cut)-admissibility
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Hyper-sequent calculus HSinl

@ Primitive connectives: { L, —, [} (classical)
@ Multi-set-based, G3-style

e No Exchange
e Built-in Weakening and Contraction
e Easier proofs of (Cut)-admissibility

@ Hyper-sequent

o [y = Aq|...[ln = Ay - finite multi-set of regular sequents
‘standing for’ /! ((AT)) = (V A)))
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Hyper-sequent calculus HSinl

@ Primitive connectives: { L, —, O} (classical)
@ Multi-set-based, G3-style
e No Exchange
e Built-in Weakening and Contraction
e Easier proofs of (Cut)-admissibility
@ Hyper-sequent
o [y = Aq|...[ln = Ay - finite multi-set of regular sequents
‘standing for’ /! ((AT)) = (V A)))
e Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange
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Hyper-sequent calculus HSinl

@ Primitive connectives: { L, —, O} (classical)
@ Multi-set-based, G3-style

e No Exchange

e Built-in Weakening and Contraction

e Easier proofs of (Cut)-admissibility

@ Hyper-sequent
o [y = Aq|...[ln = Ay - finite multi-set of regular sequents
‘standing for’ /! ((AT)) = (V A)))

e Two groups of (admissible) structural rules
(internal & external) (Weakening & Contraction)
no Exchange

@ Intuitive correspondence

e regular sequents ~ states

e hyper-sequents ~ nbd’s
- sufficient to prove (close) one sequent (state) in
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Hyper-sequent calculus HSinl

G: meta-variable for sequent multi-sets (hyper-sequents)
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Hyper-sequent calculus HSinl

@ ———— —(Ax) and —————(LL
GMp:gZ() QRL¢Z()
G: meta-variable for sequent multi-sets (hyper-sequents)
GllMh,a= B, X
) b} R
Gln = a—>6,2( )

[GIN = o, Z][GIT, 8 = X]
® T GMa—poxr L)

[...] stands for branches
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Hyper-sequent calculus HSinl

@ ———— —(Ax) and —————(LL
Cﬂﬂ,p::>p,z( ) Cﬂﬂ,i;:>2( )
G: meta-variable for sequent multi-sets (hyper-sequents)
GllMh,a= B, X
) b} R
Cﬂr1:>(1—+6,2( )

[GIN = o, X][GT, 8 = ]
e T S C

[...] stands for branches

°
r 3 ()0
I
OthOéx = {ﬁl(l)}/€{1,,k} Xe{17._.7j}
NG LR
g = /8(})/a {5;(/)}. ik
L € Kyerton e, 04,

S o)
GIM, (a1, i a0) = {0(B], - B)IE,, £
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Hyper-sequent calculus HSinl

@ HSinl is sound.
o IfHSInl - [Ty = Aq]..[Th = Ay,
then INL - /7 (ATi—V A)).
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Hyper-sequent calculus HSinl

@ HSinl is sound.
o IfHSinl+ Ty = Aq]...|Th = A,
then INL - /7 (ATi—V A)).
e Proved by an induction.
e For the (OJ) rule, a sub-induction gives a stronger form of
what we need.
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Hyper-sequent calculus HSinl

@ HSinl is sound.
o IfHSinl+ Ty = Aq]...|Th = A,
then INL - /7 (ATi—V A)).
e Proved by an induction.
e For the (OJ) rule, a sub-induction gives a stronger form of
what we need.
@ HSinl is complete.
e If INL F ¢, then HSinl = ¢.
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Hyper-sequent calculus HSinl

@ HSinl is sound.
o IfHSinl+ Ty = Aq]...|Th = A,
then INL - /7 (ATi—V A)).
e Proved by an induction.
e For the (OJ) rule, a sub-induction gives a stronger form of
what we need.
@ HSinl is complete.

e If INL I ¢, then HSIinl = ¢.
e {¢|HSinlF=- ¢} includes all axioms of INL.
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@ HSinl is sound.
o IfHSinl+ Ty = Aq]...|Th = A,
then INL - /7 (ATi—V A)).
e Proved by an induction.
e For the (OJ) rule, a sub-induction gives a stronger form of
what we need.
@ HSinl is complete.

e If INL I ¢, then HSIinl = ¢.
e {¢|HSinl = ¢} includes all axioms of INL.
e {¢|HSinl = ¢} is closed under MP

@ A corollary of (Cut)-admissibility.
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Hyper-sequent calculus HSinl

@ HSinl is sound.
o IfHSinl+ Ty = Aq]...|Th = A,
then INL - /7 (ATi—V A)).
e Proved by an induction.
e For the (OJ) rule, a sub-induction gives a stronger form of
what we need.
@ HSinl is complete.

e If INL I ¢, then HSIinl = ¢.
e {¢|HSinl = ¢} includes all axioms of INL.
e {¢|HSinl = ¢} is closed under MP

@ A corollary of (Cut)-admissibility.
e {¢|HSinl = ¢} is closed under RE.
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Hyper-sequent calculus HSinl

@ Admissibility of (Cut) (no matter (Cuty.) or (Cuty))
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Hyper-sequent calculus HSinl

@ Admissibility of (Cut) (no matter (Cuty.) or (Cuty))
@ In HSinl resp. “HSinl @ (Cut, ) of a certain ‘degree’ ”:
@ Internal/External Weakening is d.p.a.
(depth-preserved admissible).
Actually, in each provable hyper-sequent
there is a provable sequent.
@ For each formula «, (hyper-)sequent a = « is provable.
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Hyper-sequent calculus HSinl

@ Admissibility of (Cut) (no matter (Cuty.) or (Cuty))
@ In HSinl resp. “HSinl @ (Cut,) of a certain ‘degree’ ”:
@ Internal/External Weakening is d.p.a.
(depth-preserved admissible).
Actually, in each provable hyper-sequent
there is a provable sequent.
@ For each formula «, (hyper-)sequent a = « is provable.
@ External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used
when showing that of Internal Contraction.

NOLLTER(] A Hyper-sequent Calculus for INL



Hyper-sequent calculus HSinl

@ Admissibility of (Cut) (no matter (Cuty.) or (Cuty))
@ In HSinl resp. “HSinl @ (Cut,) of a certain ‘degree’ ”:
@ Internal/External Weakening is d.p.a.
(depth-preserved admissible).
Actually, in each provable hyper-sequent
there is a provable sequent.
@ For each formula «, (hyper-)sequent a = « is provable.
@ External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used
when showing that of Internal Contraction.
e Based on HSinl,
rules (Cut,) and (Cuty) (at any same ‘degree’) are
inter-derivable.
e Then, a standard double-induction works.
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Hyper-sequent calculus HSinl

@ Admissibility of (Cut) (no matter (Cuty.) or (Cuty))
@ In HSinl resp. “HSinl @ (Cut,) of a certain ‘degree’ ”:
@ Internal/External Weakening is d.p.a.
(depth-preserved admissible).
Actually, in each provable hyper-sequent
there is a provable sequent.
@ For each formula «, (hyper-)sequent a = « is provable.
@ External/Internal Contraction is d.p.a..
D.p.a. of External Contraction is used
when showing that of Internal Contraction.
e Based on HSinl,
rules (Cut,) and (Cuty) (at any same ‘degree’) are
inter-derivable.
e Then, a standard double-induction works.

@ Subformula property of HSinl as a corollary.
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Lyndon interpolation of INL

@ Lydon interpolation theorem:
(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ —1), then there is a formula € s.t.:

(a ‘polar generalization’ of Craig interpolation)
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Lyndon interpolation of INL

@ Lydon interpolation theorem:
(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ —1), then there is a formula € s.t.:

o VE(e) C VE(9) N VE()

(a ‘polar generalization’ of Craig interpolation)
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Lyndon interpolation of INL

@ Lydon interpolation theorem:
(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ —1), then there is a formula € s.t.:

o VE(e) C VE(9) N VE()
@ INLF¢p—e¢ and INLF e— 1.

(a ‘polar generalization’ of Craig interpolation)
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Lyndon interpolation of INL

@ Lydon interpolation theorem:

(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ — 1), then there is a formula € s.t.:

o VE(e) C VE(9) N VE()
@ INLF¢p—e¢ and INLF e— 1.

(a ‘polar generalization’ of Craig interpolation)

@ A general form:
If HSinl - M, Nz = ¥, X R, then there is a formula ¢ s.t.:
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Lyndon interpolation of INL

@ Lydon interpolation theorem:

(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ — 1), then there is a formula € s.t.:

o VE(e) CVE(¢) N VE(Y)
@ INLF¢p—e and INLE e—.
(a ‘polar generalization’ of Craig interpolation)
@ A general form:
If HSinl - M, Nz = ¥, X R, then there is a formula ¢ s.t.:
® V*(e) C (VT (Ma, £1)) N (VH (N, ZR))
@ HSinl-M, = X;,e and HSinlF¢ MNg—Xpg.
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Lyndon interpolation of INL

@ Lydon interpolation theorem:
(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ —1), then there is a formula € s.t.:

° V¥(e) CVH(P) NVE(Y)
@ INLF¢p—e and INLE e—.
(a ‘polar generalization’ of Craig interpolation)
@ A general form:
If HSinl - M, Nz = ¥, X R, then there is a formula ¢ s.t.:
o VE(e) C (V¥(M, =) N (VE(NL, Zr))
@ HSinl-M, = X;,e and HSinlF¢ MNg—Xpg.
@ Employ a ‘splitting version’ of HSinl
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Lyndon interpolation of INL

@ Lydon interpolation theorem:
(Let VT (a)/V~ («) denotes positive/negative atoms in «)
If INL - ¢ —1), then there is a formula € s.t.:

o VE(e) CVE(¢) N VE(Y)
@ INLF¢p—e and INLE e—.
(a ‘polar generalization’ of Craig interpolation)
@ A general form:
If HSinl - M, Nz = ¥, X R, then there is a formula ¢ s.t.:
o VE(e) C (V¥(M, =) N (VE(NL, Zr))
@ HSinl-M, = X;,e and HSinlF¢ MNg—Xpg.
@ Employ a ‘splitting version’ of HSinl
e each rule offers an interpolant of its conclusion

built up from those of its premises;
e cannot be included here in a readable manner.
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@ Thanks !
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