## **True Lies**

Xixi Logic Seminar Series Zhejiang University, 10 December 2014

Thomas Ågotnes University of Bergen, Norway

Joint work with Hans van Ditmarsch Yanjing Wang



## Introduction

- A true (or self-fulfilling) lie, is a lie that becomes true when it is made
- Example: Thomas' party
- Logical vs. non-logical true lies
- Outline:
  - Background
  - Public true lies
  - Private true lies

## Introduction

- A true (or self-fulfilling) lie, is a lie th
- Example: Thomas' party
- Logical vs. non-logical true lies
- Outline:
  - Background
  - Public true lies
  - Private true lies

When he said I do, he never said what he did.

# Schwarzenegger True Lies

Introduction and Background

#### Modal logics of knowledge and belief

 $\varphi ::= p \mid B_i \varphi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \qquad \qquad \text{Dual: } \hat{B}_i \phi \equiv \neg B_i \neg \phi$ 

$$M = (S, \sim_1, \dots, \sim_n, V) \qquad \sim_i \text{ accessibility rel. over S}$$
$$M, s \models B_i \phi \qquad \Leftrightarrow \qquad \forall t \sim_i s \ M, t \models \phi$$

#### Modal logics of knowledge and belief

 $\varphi ::= p \mid B_i \varphi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \qquad \qquad \text{Dual: } \hat{B}_i \phi \equiv \neg B_i \neg \phi$ 

 $M = (S, \sim_1, \dots, \sim_n, V) \qquad \sim_i \text{ accessibility rel. over S}$  $M, s \models B_i \phi \qquad \Leftrightarrow \qquad \forall t \sim_i s \ M, t \models \phi$ 

If we want to model knowledge rather than belief we assume that each  $\sim_i$  is a equivalence relation.

M:









#### $M|B_A p_A, s \models B_B B_A p_A$



 $\phi = p \land \neg B_b p$ 



 $\phi = p \land \neg B_b p$ 



 $\phi = p \land \neg B_b p$ 



 $\phi = p \land \neg B_b p$ 

- Dimensions:
  - Who is the lier: one of the agents in the system, or an outsider?
  - Who are being lied to (and what do the others know about that)?
  - What are the agents' attitudes to possible lies?
    - Credulous agents: believe everything
    - Skeptical agents: believe everything consistent with their existing beliefs



- Here:
  - Two cases: one of the agents in the system + outside observer
  - Credulous/skeptical agents
  - Public lie, to all other agents
  - Private lies

## Public true lies from the outside



M:



M:





M:





M:









# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies



# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies



# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies



# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

Preservation of transitivity:



Preservation of Euclidicity:

# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

Preservation of transitivity:

## Preservation of Euclidicity:



# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

Preservation of transitivity:

## Preservation of Euclidicity:



a
# Models of lying

# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

Preservation of transitivity:

# Preservation of Euclidicity:



a

# Models of lying

# Already seen:

- reflexivity is not preserved under lying
- seriality preserved only for believable lies

# Preservation of transitivity:





 $\phi$  is a true lie in M, s iff  $M, s \models \neg \phi$  and  $M|_{\phi}, s \models \phi$ 



 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B}_b \phi \\ \phi \text{ is a true lie in } M,s \text{ iff } M,s \models \neg \phi \text{ and } M|_{\phi},s \models \phi \end{array}$ 

 $\phi$  is a true lie iff  $\forall M \forall s : M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \phi$ 

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B}_b \phi \\ \phi \text{ is a true lie in } M,s \text{ iff } M,s \models \neg \phi \text{ and } M|_{\phi},s \models \phi \end{array}$ 

$$\phi \text{ is a true lie iff } \forall M \forall s : (M, s \models \neg \phi) \Rightarrow M|_{\phi}, s \models \phi$$
  
believable and  $M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot$ 

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B}_b \phi \\ \phi \text{ is a true lie in } M,s \text{ iff } M,s \models \neg \phi \text{ and } M|_{\phi},s \models \phi \end{array}$  $\phi \text{ is a true lie iff } \forall M \forall s : (M, s \models \neg \phi) \Rightarrow M|_{\phi}, s \models \phi$ believable and  $M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot$ In model class K(D)45

 $\phi$  is a true lie in M, s iff  $M, s \models \neg \phi$  and  $M|_{\phi}, s \models \phi$ 

 $\phi$  is a true lie in M, s iff  $M, s \models \neg \phi$  and  $M|_{\phi}, s \models \phi$ 

 $\phi_0 = p \wedge B_b p$ 







 $\phi_0$  is a true lie in  $M_0, s$ 



 $\phi_0$  is a true lie in  $M_0, s$  $\phi_0$  is not a true lie in  $M_0, t$ 



 $\phi_0$  is a true lie in  $M_0, s$  $\phi_0$  is not a true lie in  $M_0, t$  $\phi_0$  is not a believable true lie in  $M_0, s$ 

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

$$\phi = \neg B_b p$$

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

$$\phi = \neg B_b p$$

•  $\phi$  is not a true lie

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

$$\phi = \neg B_b p$$

- $\phi$  is not a true lie
- $\phi$  is a believable true lie

 $\begin{array}{ll} \phi \text{ is a true lie iff } \forall M \forall s : \ M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Aq} \hat{B}_b \bot \end{array}$ 

$$\phi = \neg B_b p$$

- $\phi$  is not a true lie
- $\phi$  is a believable true lie
- $\phi$  is a trivially believable true lie:  $\neg \phi \land \hat{B}_b \phi$  is inconsistent

# $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

 $\phi = B_b p$ 

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

 $\phi = B_b p$ 

• 
$$\phi$$
 is a true lie

 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

$$\phi = B_b p$$

- $\phi$  is a true lie
- $\phi$  is a trivially believable true lie





 $\begin{array}{lll} \phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi & \Rightarrow & M|_{\phi}, s \models \phi \\ \text{ believable} & \text{ and } M, s \models \bigwedge_{b \in Ag} \hat{B}_b \bot \end{array}$ 

$$\phi = p \vee B_b p$$

- $\phi$  is a true lie
- $\phi$  is not a trivially believable true lie

#### Relations to (un)successful updates

True lie in M, s:  $M, s \models \neg \phi$  and  $M|_{\phi}, s \models \phi$ 

#### Relations to (un)successful updates

True lie in M, s:

$$M, s \models \neg \phi \text{ and } M|_{\phi}, s \models \phi$$

Successful update in M, s:

 $M, s \models \phi \text{ and } M|_{\phi}, s \models \phi$ 

#### Relations to (un)successful updates

True lie in M, s:

Successful update in M, s:

Unsuccessful update in M, s:

 $M, s \models \neg \phi \text{ and } M|_{\phi}, s \models \phi$  $M, s \models \phi \text{ and } M|_{\phi}, s \models \phi$  $M, s \models \phi \text{ and } M|_{\phi}, s \models \neg \phi$ 

## Other Moorean definitions

Self-refuting truth: True lie: Impossible lie:

 $\forall M, s \quad M, s \models \phi \quad \Rightarrow \quad M|_{\phi}, s \models \neg \phi$  $\forall M, s \quad M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \phi$ Successful formula:  $\forall M, s = \phi \Rightarrow M|_{\phi}, s \models \phi$  $\forall M, s \quad M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \neg \phi$ 

## Other Moorean definitions

Self-refuting truth: True lie: Impossible lie:

 $\forall M, s \quad M, s \models \phi \quad \Rightarrow \quad M|_{\phi}, s \models \neg \phi$  $\forall M, s \quad M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \phi$ Successful formula:  $\forall M, s = \phi \Rightarrow M|_{\phi}, s \models \phi$  $\forall M, s \quad M, s \models \neg \phi \quad \Rightarrow \quad M|_{\phi}, s \models \neg \phi$ 

$$\phi = p \land \neg B_b p$$

- Unsuccessful
- Self-refuting

## Syntactic characterisation of true lies

- Exactly which formulae are (believable) true lies?
- We give a syntactic characterisation of believable true lies for the single-agent case
- The technique is based on Holliday and Icard (AiML 2010), who characterise the unsuccessful and self-refuting formulas (also in the single-agent case)

## Characterisation: preliminaries

Every KD45 formula is equivalent to one on normal form: a disjunction of conjunctions of the form

 $\delta = \alpha \wedge \Box \beta_1 \wedge \ldots \wedge \Box \beta_n \wedge \Diamond \gamma_1 \wedge \ldots \wedge \Diamond \gamma_m$ 

where  $\alpha$  and  $\gamma_i$  are conjunctions of literals and  $\beta_i$  is a disjunction of literals.

#### Characterisation: preliminaries

Every KD45 formula is equivalent to one on normal form: a disjunction of conjunctions of the form

$$\delta = \alpha \wedge \Box \beta_1 \wedge \ldots \wedge \Box \beta_n \wedge \Diamond \gamma_1 \wedge \ldots \wedge \Diamond \gamma_m$$

where  $\alpha$  and  $\gamma_i$  are conjunctions of literals and  $\beta_i$  is a disjunction of literals.

Clarity (Holliday and Icard) Given a conjunction or disjunction  $\chi$  of literals,  $L(\chi)$  denotes the set of literals.  $L(\chi)$  is open iff no literal in  $L(\chi)$  is the negation of any other. A conjunction  $\delta = \alpha \wedge \Box \beta_1 \wedge \ldots \wedge \Box \beta_n \wedge \Diamond \gamma_1 \wedge \ldots \wedge \Diamond \gamma_m$  on normal form is clear iff (i)  $L(\alpha)$  is open; (ii) there is an open set of literals  $\{l_1, \ldots, l_n\}$  with  $l_i \in L(\beta_i)$ ; and (iii) for every  $\gamma_k$  there is a set of literals  $\{l_1, \ldots, l_n\}$  with  $l_i \in L(\beta_i)$ ; such that  $\{l_1, \ldots, l_n\} \cup L(\gamma_k)$  is open. A disjunction on normal form is clear iff at least one of the disjuncts are clear.

#### Characterisation: main result (single agent)

**Definition 1.** A formula  $\phi$  on normal form is an unsuccessful lie iff there exists sets S and T of disjuncts of  $\phi$  such that every  $\theta \in T$  has a conjunct  $\Box \beta_{\theta}$  such that any normal form of

$$\chi = \neg \phi \land \Diamond \phi \land \chi_1 \land \chi_2 \land \chi_3$$

is clear, where

$$\chi_1 = \bigwedge_{\theta \in T} t(\theta) \wedge \bigwedge_{\theta \notin T} \neg t(\theta) \qquad t(\theta) = \theta^{\alpha} \wedge \bigwedge_{\Diamond \gamma} \bigvee_{in \ \theta} \bigvee_{\sigma \in S} \Diamond(\sigma^{\alpha} \wedge \gamma)$$

$$\chi_2 = \bigwedge_{\sigma \in S} \sigma^{\Box \Diamond} \wedge \bigwedge_{\sigma \notin S} \neg \sigma^{\Box \Diamond} \qquad \chi_3 = \bigwedge_{\theta \in T} \bigvee_{\sigma \in S} \Diamond (\sigma^{\alpha} \wedge \sim \beta_{\theta})$$

 $\phi$  is an unsuccessful lie iff any normal form of  $\phi$  is an unsuccessful lie.

$$\delta = \alpha \wedge \Box \beta_1 \wedge \ldots \wedge \Box \beta_n \wedge \Diamond \gamma_1 \wedge \ldots \wedge \Diamond \gamma_m$$

#### Characterisation: main result (single agent)

**Definition 1.** A formula  $\phi$  on normal form is an unsuccessful lie iff there exists sets S and T of disjuncts of  $\phi$  such that every  $\theta \in T$  has a conjunct  $\Box \beta_{\theta}$  such that any normal form of

$$\chi = \neg \phi \land \Diamond \phi \land \chi_1 \land \chi_2 \land \chi_3$$

is clear, where

$$\chi_1 = \bigwedge_{\theta \in T} t(\theta) \wedge \bigwedge_{\theta \notin T} \neg t(\theta) \qquad t(\theta) = \theta^{\alpha} \wedge \bigwedge_{\Diamond \gamma} \bigvee_{in \ \theta} \bigvee_{\sigma \in S} \Diamond (\sigma^{\alpha} \wedge \gamma)$$
$$\chi_2 = \bigwedge_{\sigma \in S} \sigma^{\Box \Diamond} \wedge \bigwedge_{\sigma \notin S} \neg \sigma^{\Box \Diamond} \qquad \chi_3 = \bigwedge_{\theta \in T} \bigvee_{\sigma \in S} \Diamond (\sigma^{\alpha} \wedge \sim \beta_{\theta})$$

 $\phi$  is an unsuccessful lie iff any normal form of  $\phi$  is an unsuccessful lie.

**Theorem 1.** A formula  $\phi$  is not a believable true lie if and only if it is an unsuccessful lie.

$$\delta = \alpha \wedge \Box \beta_1 \wedge \ldots \wedge \Box \beta_n \wedge \Diamond \gamma_1 \wedge \ldots \wedge \Diamond \gamma_m$$
## Alternation

# Alternation example: true-false-true

$$\phi = (q \lor Bq) \lor (p \land \neg Bp)$$

#### Alternation example: true-false-true

$$s: p, \neg q \iff \neg p, \neg q$$

$$p, q$$

$$\phi = (q \lor Bq) \lor (p \land \neg Bp)$$

$$M, s \models \phi$$
$$M|_{\phi}, s \models \neg \phi$$
$$(M|_{\phi})|_{\phi}, s \models \phi$$

#### Alternation example: true-false-true



 $M|_{\phi}, s \models \hat{B}\phi$ 

 $M, s \models \phi$  $M|_{\phi}, s \models \neg \phi$  $(M|_{\phi})|_{\phi}, s \models \phi$ 

## Alternation example: false-true-false

$$\begin{array}{c} & & & & & \\ s:p, \neg q & & & \neg p, q \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ p, q \end{array}$$

$$\phi = (q \lor Bq) \land ((p \lor \neg Bq) \land \neg Bp)$$

#### Alternation example: false-true-false

$$\begin{array}{c} & & & & & \\ s:p, \neg q & & & \neg p, q \\ & & & & \\ & & & & \\ & & & & \\ p, q \end{array}$$

$$\phi = (q \lor Bq) \land ((p \lor \neg Bq) \land \neg Bp)$$

$$M, s \models \neg \phi$$
$$M|_{\phi}, s \models \phi$$
$$(M|_{\phi})|_{\phi}, s \models \neg \phi$$

#### Alternation example: false-true-false

$$\begin{array}{c} & & & & & \\ s:p, \neg q & & & \neg p, q \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ p, q \end{array}$$

$$\phi = (q \lor Bq) \land ((p \lor \neg Bq) \land \neg Bp)$$

$$M, s \models \neg \phi \qquad \qquad M, s \models \hat{B}\phi$$

$$M|_{\phi}, s \models \phi \qquad \qquad M|_{\phi}, s \models \hat{B}\phi$$

$$(M|_{\phi}, s \models \phi) \qquad \qquad M|_{\phi}, s \models \hat{B}\phi$$

 $(M|_{\phi})|_{\phi}, s \models \neg \phi$ 

# Alternation: open questions

- Do examples exist for every finite alternation sequence?
- If not, how to characterise realisable sequences?
- A stronger version: for which sequences is there a formula that can realise it on *any* model?



M:



M:















Believable lie:



Believable lie:  $M|_{B_a\phi}^a, s \models \neg \bigvee_{i \in Ag} B_i \bot$ 





 $\neg \phi$  $\neg B_a \phi$ 



 $\neg\phi$  $\neg B_{a}\phi$  $B_{a}\neg\phi$  $\neg(B_{a}\phi \lor B_{a}\neg\phi)$ 

$$\neg\phi$$
$$\neg B_{a}\phi$$
$$B_{a}\neg\phi$$
$$\neg(B_{a}\phi \lor B_{a}\neg\phi)$$

# True lie by agent a, possible post-conditions



# True lie by agent a, possible post-conditions



# True lie by agent a, possible post-conditions



 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B}_b B_a \phi \\ \phi \text{ is a true lie by } a \text{ in } M,s \text{ iff } M,s \models B_a \neg \phi \text{ and } M|_{B_a \phi}^a,s \models \phi \end{array}$ 

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B_b} B_a \phi \\ \phi \text{ is a true lie by } a \text{ in } M,s \text{ iff } M,s \models B_a \neg \phi \text{ and } M|_{B_a \phi}^a,s \models \phi \end{array}$ 

 $\phi$  is a true lie by a iff  $\forall M \forall s : M, s \models B_a \neg \phi \Rightarrow M|_{B_a \phi}^a, s \models \phi$ 

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B}_b B_a \phi \\ \phi \text{ is a true lie by } a \text{ in } M,s \text{ iff } M,s \models B_a \neg \phi \text{ and } M|^a_{B_a \phi},s \models \phi \end{array}$ 

 $\phi \text{ is a true lie by a iff } \forall M \forall s : (M, s \models B_a \neg \phi \Rightarrow M|_{B_a \phi}^a, s \models \phi$ believable and  $M, s \models \bigwedge_{b \in Ag} \hat{B}_b B_a \phi$ )

 $\begin{array}{ll} \text{believable} & \text{and } M,s \models \bigwedge_{b \in Ag} \hat{B_b} B_a \phi \\ \phi \text{ is a true lie by } a \text{ in } M,s \text{ iff } M,s \models B_a \neg \phi \text{ and } M|_{B_a \phi}^a,s \models \phi \end{array}$ 



#### Example: from the inside

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 

#### Example: from the inside

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 

 $\phi_0 = p \wedge B_b p$ 

#### Example: from the inside

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 



 $\phi_0 = p \wedge B_b p$
$\phi_0 = p \wedge B_b p$ 

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 



 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 



 $\phi_0$  is a true lie by a in  $M_0, s$ 

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 



 $\phi_0$  is a true lie by a in  $M_0, s$  $\phi_0$  is not a true lie by a in  $M_0, t$ 

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 



 $\phi_0$  is a true lie by a in  $M_0, s$  $\phi_0$  is not a true lie by a in  $M_0, t$  $\phi_0$  is not a believable true lie by a in  $M_0, s$ 

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|_{B_a \phi}^a, s \models \phi$ 



 $\phi_0$  is a true lie by a in  $M_0, s$ 

 $\phi_0$  is not a true lie by a in  $M_0, t$ 

 $\phi_0$  is not a believable true lie by a in  $M_0, s$ 

(it can be shown that  $\phi_0$  is not a believable true lie on any S5 model)

### Example

 $\phi \text{ is a true lie by } a \text{ in } M, s \text{ iff } M, s \models B_a \neg \phi \text{ and } M|_{B_a\phi}^a, s \models \phi$  $\phi = p \lor B_b p \qquad \qquad M: \quad \underbrace{ \overset{a}{\underset{s}{\rightarrow}} \overset{a,b}{\underset{s}{\rightarrow}} \overset{a,b}{\underset{t}{\rightarrow}} \overset{a,b}{\underset{t}{\rightarrow}} \overset{a,b}{\underset{t}{\rightarrow}} \overset{a,b}{\underset{t}{\rightarrow}} \overset{b}{\underset{t}{\rightarrow}} \overset{b}{\underset{t}{\rightarrow}$ 

### Example

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ 

$$\phi = p \vee B_b p$$



### Example

 $\phi$  is a true lie by a in M, s iff  $M, s \models B_a \neg \phi$  and  $M|^a_{B_a\phi}, s \models \phi$ a,ba $\phi = p \vee B_b p$  $_a,b$ bb $M|_{\phi}: \quad \bullet_{\neg p}^{\neg p} \not\models^{b} \to \bullet$ 

 $\phi$  is a believable true lie in M, s

 $\phi = p \vee B_b p$ 



$$\phi = p \vee B_b p$$



 $\phi$  is also not a believable true lie (same counterexample)

# The Logic of Lying, and Private True Lies

# Language with explicit public lies and announcements

 $\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid B\phi \mid \langle !\phi \rangle \phi \mid \langle i\phi \rangle \phi$ 

 $\mathcal{U}_{\mathbf{i}\phi}: \hat{B}\phi \wedge \neg \phi$  ———

# Language with explicit public lies and announcements

$$\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid B\phi \mid \langle !\phi \rangle \phi \mid \langle i\phi \rangle \phi$$

| TAUT  | all the instances of tautologies                                                    |
|-------|-------------------------------------------------------------------------------------|
| DISTK | $\star(\phi \to \psi) \to (\star\phi \to \star\psi)$                                |
| MP    | $rac{\phi,\phi ightarrow\psi}{\psi}$                                               |
| GEN   | $\frac{\phi}{\star\phi}$                                                            |
| INV   | $(p \to [!\psi]p) \land (\neg p \to [!\psi]\neg p)$                                 |
| INV   | $(p \to [\mathbf{i}\psi]p) \land (\neg p \to [\mathbf{i}\psi]\neg p)$               |
| PRE   | $\langle !\psi \rangle \top \leftrightarrow \psi$                                   |
| PRE   | $\langle \mathbf{i}\psi \rangle \top \leftrightarrow (\neg\psi \wedge \hat{B}\psi)$ |
| DET   | $\langle \mathbf{i}\psi  angle \phi  ightarrow [\mathbf{i}\psi]\phi$                |
| DET   | $\langle !\psi  angle \phi  ightarrow [ ec \psi ] \phi$                             |
| NM    | $\langle ec \psi  angle B \phi 	o B [ec \psi] \phi$                                 |
| NM    | $\langle !\psi \rangle B\phi 	o B[!\psi]\phi$                                       |
| PR    | $B[!\psi]\phi  ightarrow [;\psi]B\phi$                                              |
| PR    | $B[!\psi]\phi  ightarrow [!\psi]B\phi$                                              |
|       |                                                                                     |

$$\mathcal{U}_{\mathbf{i}\phi}: \underline{\hat{B}\phi \wedge \neg \phi} \longrightarrow \phi'$$

# Language with explicit public lies and announcements

$$\phi ::= \top | p | \neg \phi | \phi \land \phi | B\phi | \langle !\phi \rangle \phi | \langle i\phi \rangle \phi$$

Sound and

complete

all the instances of tautologies TAUT  $\star(\phi \to \psi) \to (\star\phi \to \star\psi)$ DISTK  $\phi, \phi \to \psi$ MP  $\psi \ \phi$ GEN  $(p \to [!\psi]p) \land (\neg p \to [!\psi]\neg p)$ INV  $(p \to [\mathsf{i}\psi]p) \land (\neg p \to [\mathsf{i}\psi]\neg p)$ INV  $\langle !\psi \rangle \top \leftrightarrow \psi$ PRE  $\langle \psi \rangle \top \leftrightarrow (\neg \psi \wedge \hat{B} \psi)$ PRE  $\langle \mathbf{i}\psi\rangle\phi\rightarrow [\mathbf{i}\psi]\phi$ DET  $\langle !\psi \rangle \phi \rightarrow [i\psi] \phi$ DET  $\langle \psi \rangle B\phi \to B[!\psi]\phi$ NM  $\langle !\psi \rangle B\phi \to B[!\psi]\phi$ NM  $B[!\psi]\phi \rightarrow [;\psi]B\phi$ PR  $B[!\psi]\phi \rightarrow [!\psi]B\phi$ PR

$$\mathcal{U}_{\mathbf{i}\phi}: \underline{\hat{B}\phi \wedge \neg \phi} \longrightarrow \phi'$$

# Language with implicit public lies and announcements

$$\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid B\phi \mid \langle \mathbf{i}\phi \rangle \phi$$

| TAUT  | all the instances of tautologies                                                                 |
|-------|--------------------------------------------------------------------------------------------------|
| DISTK | $\star(\phi \to \psi) \to (\star\phi \to \star\psi)$                                             |
| MP    | $\frac{\phi, \phi \to \psi}{\psi}$                                                               |
| GEN   | $\frac{\phi}{+\phi}$                                                                             |
| INV   | $(p \to [\mathbf{i}\psi]p) \land \stackrel{\mathbf{i}\psi}{(\neg p} \to [\mathbf{i}\psi]\neg p)$ |
| PRE   | $\langle \mathbf{i}\psi \rangle \top \leftrightarrow (\psi \lor (\hat{B}\psi \land \neg \psi))$  |
| DET   | $\langle \mathbf{i}\psi  angle \phi  ightarrow [\mathbf{i}\psi]\phi$                             |
| NM    | $\langle \mathbf{i}\psi \rangle B\phi \to B(\psi \to [\mathbf{i}\psi]\phi)$                      |
| PR    | $B(\psi \to [\mathbf{i}\psi]\phi) \to [\mathbf{i}\psi]B\phi$                                     |
|       |                                                                                                  |

 $\mathcal{M}, w \vDash \langle \mathbf{j}\psi \rangle \phi \Longleftrightarrow \mathcal{M}, w \vDash \psi \lor (\neg \psi \land \hat{B}\psi) \text{ and } \mathcal{M} \otimes \mathcal{U}, (w, u) \vDash \phi$ where u is the  $\phi$ -action iff  $\mathcal{M}, w \vDash \psi$ .  $\mathcal{U}_{\mathbf{i}\psi}: \ \hat{B}\psi \land \neg \psi \longrightarrow \psi$ 

# Language with explicit private lies and announcements



# Language with explicit private lies and announcements

$$\phi \overline{ ::= \top | p | \neg \phi | \phi \land \phi | B_i \phi | \langle !^{\mathcal{G}} \phi \rangle \phi | \langle !^{\mathcal{G}} \phi \rangle \phi | \langle ?\phi : p \mapsto \phi \rangle \phi}$$

$$\mathcal{U}_{!^{\mathcal{G}}\phi} : \underline{\phi} \xrightarrow{(\mathbf{I})} \mathcal{U}_{!^{\mathcal{G}}\phi} : \underline{\neg \phi} \xrightarrow{\mathcal{G}} \phi \xrightarrow{\mathcal{G}} \overline{\mathcal{G}} \xrightarrow{\mathbf{I}} \mathcal{U}_{!^{\mathcal{G}}p \mapsto \psi} : \underline{\top}}$$

$$\mathcal{U}_{!^{\mathcal{G}}\phi} : \underline{\phi} \xrightarrow{\mathcal{G}} \phi \xrightarrow{\mathcal{G}} \phi \xrightarrow{\mathcal{G}} \overline{\mathcal{G}} \xrightarrow{\mathcal{G}} \xrightarrow{\mathcal{G}} \overline{\mathcal{G}} \xrightarrow{\mathcal{G}} \xrightarrow{\mathcal{G}} \overline{\mathcal{G}} \xrightarrow{\mathcal{G}} \xrightarrow$$

$$\begin{array}{cccc} \text{TAUT} & \text{all the instances of tautologies} \\ \text{DISTK} & \star(\phi \rightarrow \psi) \rightarrow (\star\phi \rightarrow \star\psi) \\ \text{MP} & \frac{\phi, \phi \rightarrow \psi}{\psi} & \text{DET} & \langle \mathbf{i}^{\mathcal{G}}\phi\rangle\phi \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\phi \\ \text{GEN} & \frac{\phi}{\star\phi} & \text{DET} & \langle \mathbf{i}^{\mathcal{G}}\phi\rangle\phi \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\phi \\ \text{TNV} & (p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]p) \wedge (\neg p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\neg p) & \text{UB}(\mathbf{i} \in \mathcal{G}) \\ \text{INV} & (p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]p) \wedge (\neg p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\neg p) & \text{UB}(\mathbf{i} \notin \mathcal{G}) \\ \text{INV} & (p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]p) \wedge (\neg p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\neg p) & \text{UB}(\mathbf{i} \notin \mathcal{G}) \\ \text{INV} & (p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]p) \wedge (\neg p \rightarrow [\mathbf{i}^{\mathcal{G}}\phi]\neg p) & \text{UB}(\mathbf{i} \notin \mathcal{G}) \\ \text{INV} & ((\neg \phi \rightarrow p) \wedge (\phi \rightarrow \psi)) \leftrightarrow [\mathbf{?}\phi: p \mapsto \psi]p \text{UB}(\mathbf{i} \notin \mathcal{G}) \\ \text{INV} & ((\neg \phi \rightarrow p) \wedge (\phi \rightarrow \psi)) \leftrightarrow [\mathbf{?}\phi: p \mapsto \psi]p \text{UB}(\mathbf{i} \notin \mathcal{G}) \\ \text{PRE} & \langle \mathbf{i}^{\mathcal{G}}\phi \rangle \top \leftrightarrow \phi \\ \text{PRE} & \langle \mathbf{i}^{\mathcal{G}}\phi \rangle \top \leftrightarrow \neg \phi \\ \text{PRE} & \langle \mathbf{i}^{\mathcal{G}}\phi \rangle \top \leftrightarrow \neg \phi \\ \text{PRE} & \langle \mathbf{i}^{\mathcal{G}}\phi \rangle \top \leftrightarrow \neg \phi \\ \text{PRE} & \langle \mathbf{i}^{\mathcal{G}}\phi: p \mapsto \psi \rangle \top \end{array}$$

### The party example



### The party example



The update model  $\mathcal{U}$  for  $\mathbf{j}^1 p_2$ :



### The party example



The update model  $\mathcal{U}$  for  $\mathbf{j}^1 p_2$ :



#### Updated model ( $\mathcal{M} \otimes \mathcal{U}$ )



Updated model ( $\mathcal{M}\otimes\mathcal{U}$ )



The update model  $\mathcal{U}'$  for  $?B_1p_2: p_1 \mapsto \top$ :

Updated model ( $\mathcal{M} \otimes \mathcal{U}$ )



The update model  $\mathcal{U}'$  for  $?B_1p_2: p_1 \mapsto \top$ :

Updated model ( $\mathcal{M} \otimes \mathcal{U}$ )



Updated model ( $\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}'$ )





The update model  $\mathcal{U}''$  for  $!p_1$ :





The update model  $\mathcal{U}''$  for  $!p_1$ :



$$\mathcal{U}_{!p_1}: \underline{p_1}^{1,2}$$

Updated model ( $\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}' \otimes \mathcal{U}''$ )





Updated model ( $\mathcal{M}\otimes\mathcal{U}\otimes\mathcal{U}'\otimes\mathcal{U}''\otimes\mathcal{U}'''$ )





Updated model ( $\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}' \otimes \mathcal{U}'' \otimes \mathcal{U}'''$ )





Updated model ( $\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}' \otimes \mathcal{U}'' \otimes \mathcal{U}'''$ )



which is similar to





 $\mathcal{M}, w \vDash \neg p_1 \land \neg p_2 \land \langle \mathbf{i}_1 p_2 \rangle \langle \mathbf{B}_1 p_2 : p_1 \mapsto \top \rangle \langle \mathbf{P}_1 \rangle \langle \mathbf{B}_2 p_1 : p_2 \mapsto \top \rangle p_1 \land p_2 \land B_{1,2}(p_1 \land p_2)$
## Summary

- Motivation
  - formalising true lies
  - understanding certain monotonicity properties of public announcement logic
- Related to other Moorean phenomena
- Future work:
  - Characterisation: the multi-agent case
  - Alternation questions
  - Understanding relationships
  - Lying games

